Skip to content
Snippets Groups Projects
Select Git revision
  • bc8f449db724ce6b01c96e22fbd5ee520620d90b
  • develop default protected
  • feature/variational-hydro
  • origin/stage/bouguettaia
  • feature/gmsh-reader
  • feature/reconstruction
  • save_clemence
  • feature/kinetic-schemes
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

GmshReader.cpp

Blame
  • FiniteVolumesDiffusion.hpp 7.50 KiB
    #ifndef FINITE_VOLUMES_DIFFUSION_HPP
    #define FINITE_VOLUMES_DIFFUSION_HPP
    
    // --- INCLUSION fichiers headers ---
    
    #include <Kokkos_Core.hpp>
    
    #include <rang.hpp>
    #include <BlockPerfectGas.hpp>
    
    #include <TinyVector.hpp>
    #include <TinyMatrix.hpp>
    #include <Mesh.hpp>
    #include <MeshData.hpp>
    #include <FiniteVolumesEulerUnknowns.hpp>
    
    // ---------------------------------
    
    // Creation classe FiniteVolumesDiffusion 
    
    template<typename MeshData> // MeshData est le type generique des donnees (geometriques) attachees a un maillage
    class FiniteVolumesDiffusion 
    {
      typedef typename MeshData::MeshType MeshType; // type du maillage
      typedef FiniteVolumesEulerUnknowns<MeshData> UnknownsType; // type des inconnues
    
      MeshData& m_mesh_data; // reference vers les donnees attachees du maillage
      const MeshType& m_mesh; // reference vers le maillage
      const typename MeshType::Connectivity& m_connectivity; // references vers la connectivite
    
      constexpr static size_t dimension = MeshType::dimension; // dimension du maillage (connue a la compilation)
    
      typedef TinyVector<dimension> Rd; // type de petits vecteurs (de dimension MeshType::dimension)
      typedef TinyMatrix<dimension> Rdd; // type de petites matrices
    
    private:
    
     // Sert a calculer les reductions (en gros calculer le min sur des
     // vecteurs en parallele)
      struct ReduceMin
      {
      private:
        const Kokkos::View<const double*> x_;
    
      public:
        typedef Kokkos::View<const double*>::non_const_value_type value_type;
    
        ReduceMin(const Kokkos::View<const double*>& x) : x_ (x) {}
    
        typedef Kokkos::View<const double*>::size_type size_type;
        
        KOKKOS_INLINE_FUNCTION void
        operator() (const size_type i, value_type& update) const
        {
          if (x_(i) < update) {
    	update = x_(i);
          }
        }
    
        KOKKOS_INLINE_FUNCTION void
        join (volatile value_type& dst,
    	  const volatile value_type& src) const
        {
          if (src < dst) {
    	dst = src;
          }
        }
    
        KOKKOS_INLINE_FUNCTION void
        init (value_type& dst) const
        { // The identity under max is -Inf.
          dst= Kokkos::reduction_identity<value_type>::min();
        }
      };
    
      Kokkos::View<Rd**>  // Fonction qui calcule F_jr 
      computeFjr(const Kokkos::View<const Rd**>& Cjr,
    	     const Kokkos::View<const Rd*>& uj,
    	     const Kokkos::View<const Rd*>& xr,
    	     const Kokkos::View<const double*>& kj) {
        const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	for (int r=0; r<cell_nb_nodes[j]; ++r) {
    	  m_Fjr(j,r) = ((kj(cell_nodes(j,r)) + kj(cell_nodes(j,r)-1))/(2*(xj(cell_nodes(j,r))-xj(cell_nodes(j,r)-1))))*uj(j,r)*Cjr(j,r); 
    	}
          });
    
        return m_Fjr;
      }
    
      Kokkos::View<Rd**>  // Fonction qui calcule G_jr 
      computeGjr(const Kokkos::View<const Rd*>& uj,
    	     const Kokkos::View<const double*>& Fjr) {
        const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	for (int r=0; r<cell_nb_nodes[j]; ++r) {
    	  m_Gjr(j,r) = ((uj(cell_nodes(j,r)) + uj(cell_nodes(j,r)-1))/2)*Fjr(j,r);
    	}
          });
    
        return m_Gjr;
      }
    
      // Calcul la liste des inverses d'une liste de matrices (pour
      // l'instant seulement $R^{1\times 1}$)
      void inverse(const Kokkos::View<const Rdd*>& A,
    	       Kokkos::View<Rdd*>& inv_A) const {
        Kokkos::parallel_for(A.size(), KOKKOS_LAMBDA(const int& r) {
    	inv_A(r) = Rdd{1./(A(r)(0,0))};
          });
      }
    
      // Calcul la liste des inverses d'une liste de reels
      void inverse(const Kokkos::View<const double*>& x,
    	       Kokkos::View<double*>& inv_x) const {
        Kokkos::parallel_for(x.size(), KOKKOS_LAMBDA(const int& r) {
    	inv_x(r) = 1./x(r);
          });
      }
    
    
      // Enchaine les operations pour calculer les flux (Fjr et Gjr) pour
      // pouvoir derouler le schema
      KOKKOS_INLINE_FUNCTION
      void computeExplicitFluxes(const Kokkos::View<const Rd*>& xr,
    			     const Kokkos::View<const Rd*>& xj,
    			     const Kokkos::View<const double*>& kj,
    			     const Kokkos::View<const double*>& rhoj,
    			     const Kokkos::View<const Rd*>& uj,
    			     const Kokkos::View<const Rd**>& Cjr) {
        Kokkos::View<Rd**> Fjr = m_Fjr; 
        Fjr = computeFjr(Cjr, uj, xr, kj);
        Kokkos::View<Rd**> Gjr = m_Gjr; 
        Gjr = computeGjr(uj, Fjr);
      }
    
      Kokkos::View<Rd**> m_Fjr;
      Kokkos::View<double*> m_CFL;
    
    public:
      FiniteVolumesDiffusion(MeshData& mesh_data,
    		 UnknownsType& unknowns)
        : m_mesh_data(mesh_data),
          m_mesh(mesh_data.mesh()),
          m_connectivity(m_mesh.connectivity()),
          m_Fjr("Fjr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()),
          m_CFL("CFL", m_mesh.numberOfCells())
      {
        ;
      }
    
      // Calcule une evaluation du pas de temps verifiant le CFL parabolique
      // Utilise la reduction definie dans la structure ReduceMin. Ici, dx_j=V_j
      KOKKOS_INLINE_FUNCTION
      double diffusion_dt(const Kokkos::View<const double*>& Vj,
    		      const Kokkos::View<const double*>& rhoj,
    		      const Kokkos::View<const Rd*>& xr,
    		      const Kokkos::View<const Rd*>& kj) const {
        Kokkos::View<double*> dt_j("dt_j", m_mesh.numberOfCells());
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	m_CFL(j) = rhoj(j)*Vj(j)*min(xj(j+1)-xj(j), xj(j)-xj(j-1))*(2./(kj(j+1) + 2*kj(j) + kj(j-1)));
          });
    
        double dt = std::numeric_limits<double>::max();
        Kokkos::parallel_reduce(m_mesh.numberOfCells(), ReduceMin(dt_j), dt);
    
        return dt;
      }
    
      // Avance la valeur des inconnues pendant un pas de temps dt // A MODIFIER
      void computeNextStep(const double& t, const double& dt,
    		       UnknownsType& unknowns)
      {
        Kokkos::View<double*> rhoj = unknowns.rhoj();
        Kokkos::View<Rd*> uj = unknowns.uj();
        Kokkos::View<double*> Ej = unknowns.Ej();
    
        Kokkos::View<double*> ej = unknowns.ej();
        Kokkos::View<double*> gammaj = unknowns.gammaj();
    
        const Kokkos::View<const Rd*> xj = m_mesh_data.xj();
        const Kokkos::View<const double*> Vj = m_mesh_data.Vj();
        const Kokkos::View<const Rd**> Cjr = m_mesh_data.Cjr();
        Kokkos::View<Rd*> xr = m_mesh.xr();
    
        // Calcule les flux
        computeExplicitFluxes(xr, xj, rhoj, uj, Cjr);
    
        const Kokkos::View<const Rd**> Fjr = m_Fjr;
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
        const Kokkos::View<const unsigned int**>& cell_nodes
          = m_connectivity.cellNodes();
    
        // Mise a jour de la vitesse et de l'energie totale specifique
        const Kokkos::View<const double*> inv_mj = unknowns.invMj();
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	Rd momentum_fluxes = zero;
    	double energy_fluxes = 0;
    	for (int R=0; R<cell_nb_nodes[j]; ++R) {
    	  const int r=cell_nodes(j,R);
    	  momentum_fluxes +=  Fjr(j,R);
    	  energy_fluxes   += Gjr(j,R);
    	}
    	uj[j] -= (dt*inv_mj[j]) * momentum_fluxes;
    	Ej[j] -= (dt*inv_mj[j]) * energy_fluxes;
          });
    
        // Calcul de e par la formule e = E-0.5 u^2 
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	ej[j] = Ej[j] - 0.5 * (uj[j],uj[j]);
          });
    
        // met a jour les quantites (geometriques) associees au maillage
        m_mesh_data.updateAllData();
    
        // Calcul de rho avec la formule Mj = Vj rhoj
        const Kokkos::View<const double*> mj = unknowns.mj();
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	rhoj[j] = mj[j]/Vj[j];
          });
      }
    };
    
    #endif // FINITE_VOLUMES_DIFFUSION_HPP