#ifndef FINITE_VOLUMES_DIFFUSION_HPP #define FINITE_VOLUMES_DIFFUSION_HPP // --- INCLUSION fichiers headers --- #include <Kokkos_Core.hpp> #include <rang.hpp> #include <BlockPerfectGas.hpp> #include <TinyVector.hpp> #include <TinyMatrix.hpp> #include <Mesh.hpp> #include <MeshData.hpp> #include <FiniteVolumesEulerUnknowns.hpp> // --------------------------------- // Creation classe FiniteVolumesDiffusion template<typename MeshData> // MeshData est le type generique des donnees (geometriques) attachees a un maillage class FiniteVolumesDiffusion { typedef typename MeshData::MeshType MeshType; // type du maillage typedef FiniteVolumesEulerUnknowns<MeshData> UnknownsType; // type des inconnues MeshData& m_mesh_data; // reference vers les donnees attachees du maillage const MeshType& m_mesh; // reference vers le maillage const typename MeshType::Connectivity& m_connectivity; // references vers la connectivite constexpr static size_t dimension = MeshType::dimension; // dimension du maillage (connue a la compilation) typedef TinyVector<dimension> Rd; // type de petits vecteurs (de dimension MeshType::dimension) typedef TinyMatrix<dimension> Rdd; // type de petites matrices private: // Sert a calculer les reductions (en gros calculer le min sur des // vecteurs en parallele) struct ReduceMin { private: const Kokkos::View<const double*> x_; public: typedef Kokkos::View<const double*>::non_const_value_type value_type; ReduceMin(const Kokkos::View<const double*>& x) : x_ (x) {} typedef Kokkos::View<const double*>::size_type size_type; KOKKOS_INLINE_FUNCTION void operator() (const size_type i, value_type& update) const { if (x_(i) < update) { update = x_(i); } } KOKKOS_INLINE_FUNCTION void join (volatile value_type& dst, const volatile value_type& src) const { if (src < dst) { dst = src; } } KOKKOS_INLINE_FUNCTION void init (value_type& dst) const { // The identity under max is -Inf. dst= Kokkos::reduction_identity<value_type>::min(); } }; Kokkos::View<Rd**> // Fonction qui calcule F_jr computeFjr(const Kokkos::View<const Rd**>& Cjr, const Kokkos::View<const Rd*>& uj, const Kokkos::View<const Rd*>& xr, const Kokkos::View<const double*>& kj) { const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes(); const Kokkos::View<const unsigned short*> cell_nb_nodes = m_connectivity.cellNbNodes(); Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) { for (int r=0; r<cell_nb_nodes[j]; ++r) { m_Fjr(j,r) = ((kj(cell_nodes(j,r)) + kj(cell_nodes(j,r)-1))/(2*(xj(cell_nodes(j,r))-xj(cell_nodes(j,r)-1))))*uj(j,r)*Cjr(j,r); } }); return m_Fjr; } Kokkos::View<Rd**> // Fonction qui calcule G_jr computeGjr(const Kokkos::View<const Rd*>& uj, const Kokkos::View<const double*>& Fjr) { const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes(); const Kokkos::View<const unsigned short*> cell_nb_nodes = m_connectivity.cellNbNodes(); Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) { for (int r=0; r<cell_nb_nodes[j]; ++r) { m_Gjr(j,r) = ((uj(cell_nodes(j,r)) + uj(cell_nodes(j,r)-1))/2)*Fjr(j,r); } }); return m_Gjr; } // Calcul la liste des inverses d'une liste de matrices (pour // l'instant seulement $R^{1\times 1}$) void inverse(const Kokkos::View<const Rdd*>& A, Kokkos::View<Rdd*>& inv_A) const { Kokkos::parallel_for(A.size(), KOKKOS_LAMBDA(const int& r) { inv_A(r) = Rdd{1./(A(r)(0,0))}; }); } // Calcul la liste des inverses d'une liste de reels void inverse(const Kokkos::View<const double*>& x, Kokkos::View<double*>& inv_x) const { Kokkos::parallel_for(x.size(), KOKKOS_LAMBDA(const int& r) { inv_x(r) = 1./x(r); }); } // Enchaine les operations pour calculer les flux (Fjr et Gjr) pour // pouvoir derouler le schema KOKKOS_INLINE_FUNCTION void computeExplicitFluxes(const Kokkos::View<const Rd*>& xr, const Kokkos::View<const Rd*>& xj, const Kokkos::View<const double*>& kj, const Kokkos::View<const double*>& rhoj, const Kokkos::View<const Rd*>& uj, const Kokkos::View<const Rd**>& Cjr) { Kokkos::View<Rd**> Fjr = m_Fjr; Fjr = computeFjr(Cjr, uj, xr, kj); Kokkos::View<Rd**> Gjr = m_Gjr; Gjr = computeGjr(uj, Fjr); } Kokkos::View<Rd**> m_Fjr; Kokkos::View<double*> m_CFL; public: FiniteVolumesDiffusion(MeshData& mesh_data, UnknownsType& unknowns) : m_mesh_data(mesh_data), m_mesh(mesh_data.mesh()), m_connectivity(m_mesh.connectivity()), m_Fjr("Fjr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()), m_CFL("CFL", m_mesh.numberOfCells()) { ; } // Calcule une evaluation du pas de temps verifiant le CFL parabolique // Utilise la reduction definie dans la structure ReduceMin. Ici, dx_j=V_j KOKKOS_INLINE_FUNCTION double diffusion_dt(const Kokkos::View<const double*>& Vj, const Kokkos::View<const double*>& rhoj, const Kokkos::View<const Rd*>& xr, const Kokkos::View<const Rd*>& kj) const { Kokkos::View<double*> dt_j("dt_j", m_mesh.numberOfCells()); Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){ m_CFL(j) = rhoj(j)*Vj(j)*min(xj(j+1)-xj(j), xj(j)-xj(j-1))*(2./(kj(j+1) + 2*kj(j) + kj(j-1))); }); double dt = std::numeric_limits<double>::max(); Kokkos::parallel_reduce(m_mesh.numberOfCells(), ReduceMin(dt_j), dt); return dt; } // Avance la valeur des inconnues pendant un pas de temps dt // A MODIFIER void computeNextStep(const double& t, const double& dt, UnknownsType& unknowns) { Kokkos::View<double*> rhoj = unknowns.rhoj(); Kokkos::View<Rd*> uj = unknowns.uj(); Kokkos::View<double*> Ej = unknowns.Ej(); Kokkos::View<double*> ej = unknowns.ej(); Kokkos::View<double*> gammaj = unknowns.gammaj(); const Kokkos::View<const Rd*> xj = m_mesh_data.xj(); const Kokkos::View<const double*> Vj = m_mesh_data.Vj(); const Kokkos::View<const Rd**> Cjr = m_mesh_data.Cjr(); Kokkos::View<Rd*> xr = m_mesh.xr(); // Calcule les flux computeExplicitFluxes(xr, xj, rhoj, uj, Cjr); const Kokkos::View<const Rd**> Fjr = m_Fjr; const Kokkos::View<const unsigned short*> cell_nb_nodes = m_connectivity.cellNbNodes(); const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes(); // Mise a jour de la vitesse et de l'energie totale specifique const Kokkos::View<const double*> inv_mj = unknowns.invMj(); Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) { Rd momentum_fluxes = zero; double energy_fluxes = 0; for (int R=0; R<cell_nb_nodes[j]; ++R) { const int r=cell_nodes(j,R); momentum_fluxes += Fjr(j,R); energy_fluxes += Gjr(j,R); } uj[j] -= (dt*inv_mj[j]) * momentum_fluxes; Ej[j] -= (dt*inv_mj[j]) * energy_fluxes; }); // Calcul de e par la formule e = E-0.5 u^2 Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) { ej[j] = Ej[j] - 0.5 * (uj[j],uj[j]); }); // met a jour les quantites (geometriques) associees au maillage m_mesh_data.updateAllData(); // Calcul de rho avec la formule Mj = Vj rhoj const Kokkos::View<const double*> mj = unknowns.mj(); Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){ rhoj[j] = mj[j]/Vj[j]; }); } }; #endif // FINITE_VOLUMES_DIFFUSION_HPP