Select Git revision
RandomEngine.cpp
main.cpp 16.58 KiB
#include <utils/PugsUtils.hpp>
#include <mesh/Connectivity.hpp>
#include <mesh/Mesh.hpp>
#include <scheme/AcousticSolver.hpp>
#include <scheme/BoundaryCondition.hpp>
#include <output/VTKWriter.hpp>
#include <utils/Exceptions.hpp>
#include <utils/Timer.hpp>
#include <algebra/TinyMatrix.hpp>
#include <algebra/TinyVector.hpp>
#include <scheme/BoundaryConditionDescriptor.hpp>
#include <mesh/MeshNodeBoundary.hpp>
#include <language/PugsParser.hpp>
#include <mesh/GmshReader.hpp>
#include <mesh/SynchronizerManager.hpp>
#include <rang.hpp>
#include <iostream>
#include <limits>
#include <map>
#include <regex>
int
main(int argc, char* argv[])
{
try {
std::string filename = initialize(argc, argv);
std::regex gmsh_regex("(.*).msh");
if (not std::regex_match(filename, gmsh_regex)) {
parser(filename);
return 0;
}
std::map<std::string, double> method_cost_map;
SynchronizerManager::create();
if (filename != "") {
std::cout << "Reading (gmsh) " << rang::style::underline << filename << rang::style::reset << " ...\n";
Timer gmsh_timer;
gmsh_timer.reset();
GmshReader gmsh_reader(filename);
method_cost_map["Mesh building"] = gmsh_timer.seconds();
std::shared_ptr<IMesh> p_mesh = gmsh_reader.mesh();
switch (p_mesh->dimension()) {
case 1: {
std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX"};
std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
for (const auto& sym_boundary_name : sym_boundary_name_list) {
std::shared_ptr<BoundaryDescriptor> boudary_descriptor =
std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
SymmetryBoundaryConditionDescriptor* sym_bc_descriptor =
new SymmetryBoundaryConditionDescriptor(boudary_descriptor);
bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
}
using ConnectivityType = Connectivity1D;
using MeshType = Mesh<ConnectivityType>;
using MeshDataType = MeshData<MeshType>;
using UnknownsType = FiniteVolumesEulerUnknowns<MeshDataType>;
const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());
Timer timer;
timer.reset();
MeshDataType mesh_data(mesh);
std::vector<BoundaryConditionHandler> bc_list;
{
for (const auto& bc_descriptor : bc_descriptor_list) {
switch (bc_descriptor->type()) {
case BoundaryConditionDescriptor::Type::symmetry: {
const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor =
dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
for (size_t i_ref_node_list = 0;
i_ref_node_list < mesh.connectivity().numberOfRefItemList<ItemType::node>(); ++i_ref_node_list) {
const RefNodeList& ref_node_list = mesh.connectivity().refItemList<ItemType::node>(i_ref_node_list);
const RefId& ref = ref_node_list.refId();
if (ref == sym_bc_descriptor.boundaryDescriptor()) {
SymmetryBoundaryCondition<MeshType::Dimension>* sym_bc =
new SymmetryBoundaryCondition<MeshType::Dimension>(
MeshFlatNodeBoundary<MeshType::Dimension>(mesh, ref_node_list));
std::shared_ptr<SymmetryBoundaryCondition<MeshType::Dimension>> bc(sym_bc);
bc_list.push_back(BoundaryConditionHandler(bc));
}
}
break;
}
default: {
throw UnexpectedError("Unknown BCDescription\n");
}
}
}
}
UnknownsType unknowns(mesh_data);
unknowns.initializeSod();
AcousticSolver<MeshDataType> acoustic_solver(mesh_data, bc_list);
using Rd = TinyVector<MeshType::Dimension>;
const CellValue<const double>& Vj = mesh_data.Vj();
const double tmax = 0.2;
double t = 0;
int itermax = std::numeric_limits<int>::max();
int iteration = 0;
CellValue<double>& rhoj = unknowns.rhoj();
CellValue<double>& ej = unknowns.ej();
CellValue<double>& pj = unknowns.pj();
CellValue<double>& gammaj = unknowns.gammaj();
CellValue<double>& cj = unknowns.cj();
BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
VTKWriter vtk_writer("mesh", 0.01);
while ((t < tmax) and (iteration < itermax)) {
vtk_writer.write(mesh,
{NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
NamedItemValue{"coords", mesh.xr()},
NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
t);
double dt = 0.4 * acoustic_solver.acoustic_dt(Vj, cj);
if (t + dt > tmax) {
dt = tmax - t;
}
acoustic_solver.computeNextStep(t, dt, unknowns);
block_eos.updatePandCFromRhoE();
t += dt;
++iteration;
}
vtk_writer.write(mesh,
{NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
NamedItemValue{"coords", mesh.xr()},
NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
t, true); // forces last output
std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset << ": " << rang::fgB::green
<< t << rang::fg::reset << " (" << iteration << " iterations)\n";
method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
{ // gnuplot output for density
const CellValue<const Rd>& xj = mesh_data.xj();
const CellValue<const double>& rhoj = unknowns.rhoj();
std::ofstream fout("rho");
for (CellId j = 0; j < mesh.numberOfCells(); ++j) {
fout << xj[j][0] << ' ' << rhoj[j] << '\n';
}
}
break;
}
case 2: {
// test case boundary condition description
std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX", "YMIN", "YMAX"};
std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
for (const auto& sym_boundary_name : sym_boundary_name_list) {
std::shared_ptr<BoundaryDescriptor> boudary_descriptor =
std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
SymmetryBoundaryConditionDescriptor* sym_bc_descriptor =
new SymmetryBoundaryConditionDescriptor(boudary_descriptor);
bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
}
using ConnectivityType = Connectivity2D;
using MeshType = Mesh<ConnectivityType>;
using MeshDataType = MeshData<MeshType>;
using UnknownsType = FiniteVolumesEulerUnknowns<MeshDataType>;
const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());
Timer timer;
timer.reset();
MeshDataType mesh_data(mesh);
std::vector<BoundaryConditionHandler> bc_list;
{
for (const auto& bc_descriptor : bc_descriptor_list) {
switch (bc_descriptor->type()) {
case BoundaryConditionDescriptor::Type::symmetry: {
const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor =
dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
for (size_t i_ref_face_list = 0;
i_ref_face_list < mesh.connectivity().numberOfRefItemList<ItemType::face>(); ++i_ref_face_list) {
const RefFaceList& ref_face_list = mesh.connectivity().refItemList<ItemType::face>(i_ref_face_list);
const RefId& ref = ref_face_list.refId();
if (ref == sym_bc_descriptor.boundaryDescriptor()) {
SymmetryBoundaryCondition<MeshType::Dimension>* sym_bc =
new SymmetryBoundaryCondition<MeshType::Dimension>(
MeshFlatNodeBoundary<MeshType::Dimension>(mesh, ref_face_list));
std::shared_ptr<SymmetryBoundaryCondition<MeshType::Dimension>> bc(sym_bc);
bc_list.push_back(BoundaryConditionHandler(bc));
}
}
break;
}
default: {
throw UnexpectedError("Unknown BCDescription\n");
}
}
}
}
UnknownsType unknowns(mesh_data);
unknowns.initializeSod();
AcousticSolver<MeshDataType> acoustic_solver(mesh_data, bc_list);
const CellValue<const double>& Vj = mesh_data.Vj();
const double tmax = 0.2;
double t = 0;
int itermax = std::numeric_limits<int>::max();
int iteration = 0;
CellValue<double>& rhoj = unknowns.rhoj();
CellValue<double>& ej = unknowns.ej();
CellValue<double>& pj = unknowns.pj();
CellValue<double>& gammaj = unknowns.gammaj();
CellValue<double>& cj = unknowns.cj();
BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
VTKWriter vtk_writer("mesh", 0.01);
while ((t < tmax) and (iteration < itermax)) {
vtk_writer.write(mesh,
{NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
NamedItemValue{"coords", mesh.xr()},
NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
t);
double dt = 0.4 * acoustic_solver.acoustic_dt(Vj, cj);
if (t + dt > tmax) {
dt = tmax - t;
}
acoustic_solver.computeNextStep(t, dt, unknowns);
block_eos.updatePandCFromRhoE();
t += dt;
++iteration;
}
vtk_writer.write(mesh,
{NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
NamedItemValue{"coords", mesh.xr()},
NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
t, true); // forces last output
std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset << ": " << rang::fgB::green
<< t << rang::fg::reset << " (" << iteration << " iterations)\n";
method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
break;
}
case 3: {
std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX", "YMIN", "YMAX", "ZMIN", "ZMAX"};
std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
for (const auto& sym_boundary_name : sym_boundary_name_list) {
std::shared_ptr<BoundaryDescriptor> boudary_descriptor =
std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
SymmetryBoundaryConditionDescriptor* sym_bc_descriptor =
new SymmetryBoundaryConditionDescriptor(boudary_descriptor);
bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
}
using ConnectivityType = Connectivity3D;
using MeshType = Mesh<ConnectivityType>;
using MeshDataType = MeshData<MeshType>;
using UnknownsType = FiniteVolumesEulerUnknowns<MeshDataType>;
const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());
Timer timer;
timer.reset();
MeshDataType mesh_data(mesh);
std::vector<BoundaryConditionHandler> bc_list;
{
for (const auto& bc_descriptor : bc_descriptor_list) {
switch (bc_descriptor->type()) {
case BoundaryConditionDescriptor::Type::symmetry: {
const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor =
dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
for (size_t i_ref_face_list = 0;
i_ref_face_list < mesh.connectivity().numberOfRefItemList<ItemType::face>(); ++i_ref_face_list) {
const RefFaceList& ref_face_list = mesh.connectivity().refItemList<ItemType::face>(i_ref_face_list);
const RefId& ref = ref_face_list.refId();
if (ref == sym_bc_descriptor.boundaryDescriptor()) {
SymmetryBoundaryCondition<MeshType::Dimension>* sym_bc =
new SymmetryBoundaryCondition<MeshType::Dimension>(
MeshFlatNodeBoundary<MeshType::Dimension>(mesh, ref_face_list));
std::shared_ptr<SymmetryBoundaryCondition<MeshType::Dimension>> bc(sym_bc);
bc_list.push_back(BoundaryConditionHandler(bc));
}
}
break;
}
default: {
throw UnexpectedError("Unknown BCDescription\n");
}
}
}
}
UnknownsType unknowns(mesh_data);
unknowns.initializeSod();
AcousticSolver<MeshDataType> acoustic_solver(mesh_data, bc_list);
const CellValue<const double>& Vj = mesh_data.Vj();
const double tmax = 0.2;
double t = 0;
int itermax = std::numeric_limits<int>::max();
int iteration = 0;
CellValue<double>& rhoj = unknowns.rhoj();
CellValue<double>& ej = unknowns.ej();
CellValue<double>& pj = unknowns.pj();
CellValue<double>& gammaj = unknowns.gammaj();
CellValue<double>& cj = unknowns.cj();
BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
VTKWriter vtk_writer("mesh", 0.01);
while ((t < tmax) and (iteration < itermax)) {
vtk_writer.write(mesh,
{NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
NamedItemValue{"coords", mesh.xr()},
NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
t);
double dt = 0.4 * acoustic_solver.acoustic_dt(Vj, cj);
if (t + dt > tmax) {
dt = tmax - t;
}
acoustic_solver.computeNextStep(t, dt, unknowns);
block_eos.updatePandCFromRhoE();
t += dt;
++iteration;
}
vtk_writer.write(mesh,
{NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
NamedItemValue{"coords", mesh.xr()},
NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
t, true); // forces last output
std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset << ": " << rang::fgB::green
<< t << rang::fg::reset << " (" << iteration << " iterations)\n";
method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
break;
}
}
std::cout << "* " << rang::fgB::red << "Could not be uglier!" << rang::fg::reset << " (" << __FILE__ << ':'
<< __LINE__ << ")\n";
} else {
throw NormalError("Connectivity1D defined by number of nodes no more implemented\n");
}
SynchronizerManager::destroy();
finalize();
std::string::size_type size = 0;
for (const auto& method_cost : method_cost_map) {
size = std::max(size, method_cost.first.size());
}
for (const auto& method_cost : method_cost_map) {
std::cout << "* [" << rang::fgB::cyan << std::setw(size) << std::left << method_cost.first << rang::fg::reset
<< "] Execution time: " << rang::style::bold << method_cost.second << rang::style::reset << '\n';
}
}
catch (const NormalError& e) {
// Each failing process must write
std::cerr.setstate(std::ios::goodbit);
std::cerr << e.what() << '\n';
return 1;
}
return 0;
}