#include <utils/PugsUtils.hpp>

#include <mesh/Connectivity.hpp>
#include <mesh/Mesh.hpp>

#include <scheme/AcousticSolver.hpp>
#include <scheme/BoundaryCondition.hpp>

#include <output/VTKWriter.hpp>

#include <utils/Exceptions.hpp>
#include <utils/Timer.hpp>

#include <algebra/TinyMatrix.hpp>
#include <algebra/TinyVector.hpp>

#include <scheme/BoundaryConditionDescriptor.hpp>

#include <mesh/MeshNodeBoundary.hpp>

#include <language/PugsParser.hpp>
#include <mesh/GmshReader.hpp>

#include <mesh/SynchronizerManager.hpp>

#include <rang.hpp>

#include <iostream>

#include <limits>
#include <map>
#include <regex>

int
main(int argc, char* argv[])
{
  try {
    std::string filename = initialize(argc, argv);

    std::regex gmsh_regex("(.*).msh");
    if (not std::regex_match(filename, gmsh_regex)) {
      parser(filename);
      return 0;
    }

    std::map<std::string, double> method_cost_map;

    SynchronizerManager::create();

    if (filename != "") {
      std::cout << "Reading (gmsh) " << rang::style::underline << filename << rang::style::reset << " ...\n";
      Timer gmsh_timer;
      gmsh_timer.reset();
      GmshReader gmsh_reader(filename);
      method_cost_map["Mesh building"] = gmsh_timer.seconds();

      std::shared_ptr<IMesh> p_mesh = gmsh_reader.mesh();

      switch (p_mesh->dimension()) {
      case 1: {
        std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX"};
        std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
        for (const auto& sym_boundary_name : sym_boundary_name_list) {
          std::shared_ptr<BoundaryDescriptor> boudary_descriptor =
            std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
          SymmetryBoundaryConditionDescriptor* sym_bc_descriptor =
            new SymmetryBoundaryConditionDescriptor(boudary_descriptor);

          bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
        }

        using ConnectivityType = Connectivity1D;
        using MeshType         = Mesh<ConnectivityType>;
        using MeshDataType     = MeshData<MeshType>;
        using UnknownsType     = FiniteVolumesEulerUnknowns<MeshDataType>;

        const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());

        Timer timer;
        timer.reset();
        MeshDataType mesh_data(mesh);

        std::vector<BoundaryConditionHandler> bc_list;
        {
          for (const auto& bc_descriptor : bc_descriptor_list) {
            switch (bc_descriptor->type()) {
            case BoundaryConditionDescriptor::Type::symmetry: {
              const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor =
                dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
              for (size_t i_ref_node_list = 0;
                   i_ref_node_list < mesh.connectivity().numberOfRefItemList<ItemType::node>(); ++i_ref_node_list) {
                const RefNodeList& ref_node_list = mesh.connectivity().refItemList<ItemType::node>(i_ref_node_list);
                const RefId& ref                 = ref_node_list.refId();
                if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                  SymmetryBoundaryCondition<MeshType::Dimension>* sym_bc =
                    new SymmetryBoundaryCondition<MeshType::Dimension>(
                      MeshFlatNodeBoundary<MeshType::Dimension>(mesh, ref_node_list));
                  std::shared_ptr<SymmetryBoundaryCondition<MeshType::Dimension>> bc(sym_bc);
                  bc_list.push_back(BoundaryConditionHandler(bc));
                }
              }
              break;
            }
            default: {
              throw UnexpectedError("Unknown BCDescription\n");
            }
            }
          }
        }

        UnknownsType unknowns(mesh_data);

        unknowns.initializeSod();

        AcousticSolver<MeshDataType> acoustic_solver(mesh_data, bc_list);

        using Rd = TinyVector<MeshType::Dimension>;

        const CellValue<const double>& Vj = mesh_data.Vj();

        const double tmax = 0.2;
        double t          = 0;

        int itermax   = std::numeric_limits<int>::max();
        int iteration = 0;

        CellValue<double>& rhoj   = unknowns.rhoj();
        CellValue<double>& ej     = unknowns.ej();
        CellValue<double>& pj     = unknowns.pj();
        CellValue<double>& gammaj = unknowns.gammaj();
        CellValue<double>& cj     = unknowns.cj();

        BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);

        VTKWriter vtk_writer("mesh", 0.01);

        while ((t < tmax) and (iteration < itermax)) {
          vtk_writer.write(mesh,
                           {NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
                            NamedItemValue{"coords", mesh.xr()},
                            NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                            NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
                           t);
          double dt = 0.4 * acoustic_solver.acoustic_dt(Vj, cj);
          if (t + dt > tmax) {
            dt = tmax - t;
          }
          acoustic_solver.computeNextStep(t, dt, unknowns);

          block_eos.updatePandCFromRhoE();

          t += dt;
          ++iteration;
        }
        vtk_writer.write(mesh,
                         {NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
                          NamedItemValue{"coords", mesh.xr()},
                          NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                          NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
                         t, true);   // forces last output

        std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset << ":  " << rang::fgB::green
                  << t << rang::fg::reset << " (" << iteration << " iterations)\n";

        method_cost_map["AcousticSolverWithMesh"] = timer.seconds();

        {   // gnuplot output for density
          const CellValue<const Rd>& xj       = mesh_data.xj();
          const CellValue<const double>& rhoj = unknowns.rhoj();
          std::ofstream fout("rho");
          for (CellId j = 0; j < mesh.numberOfCells(); ++j) {
            fout << xj[j][0] << ' ' << rhoj[j] << '\n';
          }
        }

        break;
      }
      case 2: {
        // test case boundary condition description
        std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX", "YMIN", "YMAX"};
        std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
        for (const auto& sym_boundary_name : sym_boundary_name_list) {
          std::shared_ptr<BoundaryDescriptor> boudary_descriptor =
            std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
          SymmetryBoundaryConditionDescriptor* sym_bc_descriptor =
            new SymmetryBoundaryConditionDescriptor(boudary_descriptor);

          bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
        }

        using ConnectivityType = Connectivity2D;
        using MeshType         = Mesh<ConnectivityType>;
        using MeshDataType     = MeshData<MeshType>;
        using UnknownsType     = FiniteVolumesEulerUnknowns<MeshDataType>;

        const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());

        Timer timer;
        timer.reset();
        MeshDataType mesh_data(mesh);

        std::vector<BoundaryConditionHandler> bc_list;
        {
          for (const auto& bc_descriptor : bc_descriptor_list) {
            switch (bc_descriptor->type()) {
            case BoundaryConditionDescriptor::Type::symmetry: {
              const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor =
                dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
              for (size_t i_ref_face_list = 0;
                   i_ref_face_list < mesh.connectivity().numberOfRefItemList<ItemType::face>(); ++i_ref_face_list) {
                const RefFaceList& ref_face_list = mesh.connectivity().refItemList<ItemType::face>(i_ref_face_list);
                const RefId& ref                 = ref_face_list.refId();
                if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                  SymmetryBoundaryCondition<MeshType::Dimension>* sym_bc =
                    new SymmetryBoundaryCondition<MeshType::Dimension>(
                      MeshFlatNodeBoundary<MeshType::Dimension>(mesh, ref_face_list));
                  std::shared_ptr<SymmetryBoundaryCondition<MeshType::Dimension>> bc(sym_bc);
                  bc_list.push_back(BoundaryConditionHandler(bc));
                }
              }
              break;
            }
            default: {
              throw UnexpectedError("Unknown BCDescription\n");
            }
            }
          }
        }

        UnknownsType unknowns(mesh_data);

        unknowns.initializeSod();

        AcousticSolver<MeshDataType> acoustic_solver(mesh_data, bc_list);

        const CellValue<const double>& Vj = mesh_data.Vj();

        const double tmax = 0.2;
        double t          = 0;

        int itermax   = std::numeric_limits<int>::max();
        int iteration = 0;

        CellValue<double>& rhoj   = unknowns.rhoj();
        CellValue<double>& ej     = unknowns.ej();
        CellValue<double>& pj     = unknowns.pj();
        CellValue<double>& gammaj = unknowns.gammaj();
        CellValue<double>& cj     = unknowns.cj();

        BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);

        VTKWriter vtk_writer("mesh", 0.01);

        while ((t < tmax) and (iteration < itermax)) {
          vtk_writer.write(mesh,
                           {NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
                            NamedItemValue{"coords", mesh.xr()},
                            NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                            NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
                           t);
          double dt = 0.4 * acoustic_solver.acoustic_dt(Vj, cj);
          if (t + dt > tmax) {
            dt = tmax - t;
          }
          acoustic_solver.computeNextStep(t, dt, unknowns);

          block_eos.updatePandCFromRhoE();

          t += dt;
          ++iteration;
        }
        vtk_writer.write(mesh,
                         {NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
                          NamedItemValue{"coords", mesh.xr()},
                          NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                          NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
                         t, true);   // forces last output

        std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset << ":  " << rang::fgB::green
                  << t << rang::fg::reset << " (" << iteration << " iterations)\n";

        method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
        break;
      }
      case 3: {
        std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX", "YMIN", "YMAX", "ZMIN", "ZMAX"};
        std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
        for (const auto& sym_boundary_name : sym_boundary_name_list) {
          std::shared_ptr<BoundaryDescriptor> boudary_descriptor =
            std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
          SymmetryBoundaryConditionDescriptor* sym_bc_descriptor =
            new SymmetryBoundaryConditionDescriptor(boudary_descriptor);

          bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
        }

        using ConnectivityType = Connectivity3D;
        using MeshType         = Mesh<ConnectivityType>;
        using MeshDataType     = MeshData<MeshType>;
        using UnknownsType     = FiniteVolumesEulerUnknowns<MeshDataType>;

        const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());

        Timer timer;
        timer.reset();
        MeshDataType mesh_data(mesh);

        std::vector<BoundaryConditionHandler> bc_list;
        {
          for (const auto& bc_descriptor : bc_descriptor_list) {
            switch (bc_descriptor->type()) {
            case BoundaryConditionDescriptor::Type::symmetry: {
              const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor =
                dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
              for (size_t i_ref_face_list = 0;
                   i_ref_face_list < mesh.connectivity().numberOfRefItemList<ItemType::face>(); ++i_ref_face_list) {
                const RefFaceList& ref_face_list = mesh.connectivity().refItemList<ItemType::face>(i_ref_face_list);
                const RefId& ref                 = ref_face_list.refId();
                if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                  SymmetryBoundaryCondition<MeshType::Dimension>* sym_bc =
                    new SymmetryBoundaryCondition<MeshType::Dimension>(
                      MeshFlatNodeBoundary<MeshType::Dimension>(mesh, ref_face_list));
                  std::shared_ptr<SymmetryBoundaryCondition<MeshType::Dimension>> bc(sym_bc);
                  bc_list.push_back(BoundaryConditionHandler(bc));
                }
              }
              break;
            }
            default: {
              throw UnexpectedError("Unknown BCDescription\n");
            }
            }
          }
        }

        UnknownsType unknowns(mesh_data);

        unknowns.initializeSod();

        AcousticSolver<MeshDataType> acoustic_solver(mesh_data, bc_list);

        const CellValue<const double>& Vj = mesh_data.Vj();

        const double tmax = 0.2;
        double t          = 0;

        int itermax   = std::numeric_limits<int>::max();
        int iteration = 0;

        CellValue<double>& rhoj   = unknowns.rhoj();
        CellValue<double>& ej     = unknowns.ej();
        CellValue<double>& pj     = unknowns.pj();
        CellValue<double>& gammaj = unknowns.gammaj();
        CellValue<double>& cj     = unknowns.cj();

        BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);

        VTKWriter vtk_writer("mesh", 0.01);

        while ((t < tmax) and (iteration < itermax)) {
          vtk_writer.write(mesh,
                           {NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
                            NamedItemValue{"coords", mesh.xr()},
                            NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                            NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
                           t);
          double dt = 0.4 * acoustic_solver.acoustic_dt(Vj, cj);
          if (t + dt > tmax) {
            dt = tmax - t;
          }
          acoustic_solver.computeNextStep(t, dt, unknowns);
          block_eos.updatePandCFromRhoE();

          t += dt;
          ++iteration;
        }
        vtk_writer.write(mesh,
                         {NamedItemValue{"density", rhoj}, NamedItemValue{"velocity", unknowns.uj()},
                          NamedItemValue{"coords", mesh.xr()},
                          NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                          NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},
                         t, true);   // forces last output

        std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset << ":  " << rang::fgB::green
                  << t << rang::fg::reset << " (" << iteration << " iterations)\n";

        method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
        break;
      }
      }

      std::cout << "* " << rang::fgB::red << "Could not be uglier!" << rang::fg::reset << " (" << __FILE__ << ':'
                << __LINE__ << ")\n";

    } else {
      throw NormalError("Connectivity1D defined by number of nodes no more implemented\n");
    }

    SynchronizerManager::destroy();

    finalize();

    std::string::size_type size = 0;
    for (const auto& method_cost : method_cost_map) {
      size = std::max(size, method_cost.first.size());
    }

    for (const auto& method_cost : method_cost_map) {
      std::cout << "* [" << rang::fgB::cyan << std::setw(size) << std::left << method_cost.first << rang::fg::reset
                << "] Execution time: " << rang::style::bold << method_cost.second << rang::style::reset << '\n';
    }
  }
  catch (const NormalError& e) {
    // Each failing process must write
    std::cerr.setstate(std::ios::goodbit);
    std::cerr << e.what() << '\n';
    return 1;
  }

  return 0;
}