Select Git revision
AcousticSolver.hpp
-
Stéphane Del Pino authored
Tried to get values from a specialized access function according to the type of items but does not always compile depending on the placement of the called function. If the template function call is operated into the connectivity class, everything works like a charm, but using it outside leads to weird compilation issue. Is it a compiler issue?
Stéphane Del Pino authoredTried to get values from a specialized access function according to the type of items but does not always compile depending on the placement of the called function. If the template function call is operated into the connectivity class, everything works like a charm, but using it outside leads to weird compilation issue. Is it a compiler issue?
AcousticSolver.hpp 11.42 KiB
#ifndef ACOUSTIC_SOLVER_HPP
#define ACOUSTIC_SOLVER_HPP
// --- INCLUSION fichiers headers ---
#include <Kokkos_Core.hpp>
#include <rang.hpp>
#include <BlockPerfectGas.hpp>
#include <TinyVector.hpp>
#include <TinyMatrix.hpp>
#include <Mesh.hpp>
#include <MeshData.hpp>
#include <FiniteVolumesEulerUnknowns.hpp>
// ---------------------------------
// Creation classe AcousticSolver
template<typename MeshData> // MeshData est le type generique des donnees (geometriques) attachees a un maillage
class AcousticSolver
{
typedef typename MeshData::MeshType MeshType; // de type du maillage
typedef FiniteVolumesEulerUnknowns<MeshData> UnknownsType; // type des inconnues
MeshData& m_mesh_data; //reference vers les donnees attachees du maillage
MeshType& m_mesh; // reference vers le maillage
const typename MeshType::Connectivity& m_connectivity; // references vers la connectivite
constexpr static size_t dimension = MeshType::dimension; // dimension du maillage (connue a la compilation)
typedef TinyVector<dimension> Rd; // type de petits vecteurs (de dimension MeshType::dimension)
typedef TinyMatrix<dimension> Rdd; // type de petites matrices
private:
// -------
// Sert a calculer les reductions (en gros calculer le min sur des
// vecteurs en parallele) Ne pas regarder plus comment ca marche.
struct ReduceMin
{
private:
const Kokkos::View<const double*> x_;
public:
typedef Kokkos::View<const double*>::non_const_value_type value_type;
ReduceMin(const Kokkos::View<const double*>& x) : x_ (x) {}
typedef Kokkos::View<const double*>::size_type size_type;
KOKKOS_INLINE_FUNCTION void
operator() (const size_type i, value_type& update) const
{
if (x_(i) < update) {
update = x_(i);
}
}
KOKKOS_INLINE_FUNCTION void
join (volatile value_type& dst,
const volatile value_type& src) const
{
if (src < dst) {
dst = src;
}
}
KOKKOS_INLINE_FUNCTION void
init (value_type& dst) const
{ // The identity under max is -Inf.
dst= Kokkos::reduction_identity<value_type>::min();
}
};
// -------
KOKKOS_INLINE_FUNCTION // Fonction qui calcule (rho c)_j
const Kokkos::View<const double*>
computeRhoCj(const Kokkos::View<const double*>& rhoj,
const Kokkos::View<const double*>& cj)
{
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
m_rhocj[j] = rhoj[j]*cj[j];
});
return m_rhocj;
}
KOKKOS_INLINE_FUNCTION // Fonction qui calcule A_jr
const Kokkos::View<const Rdd**>
computeAjr(const Kokkos::View<const double*>& rhocj,
const Kokkos::View<const Rd**>& Cjr) {
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_connectivity.cellNbNodes();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
for (int r=0; r<cell_nb_nodes[j]; ++r) {
m_Ajr(j,r) = tensorProduct(rhocj(j)*Cjr(j,r), Cjr(j,r));
}
});
return m_Ajr;
}
KOKKOS_INLINE_FUNCTION // Fonction qui calcule A_r (la matrice locale au sommet r)
const Kokkos::View<const Rdd*>
computeAr(const Kokkos::View<const Rdd**>& Ajr) {
const Kokkos::View<const unsigned int**> node_cells = m_connectivity.nodeCells();
const Kokkos::View<const unsigned short**> node_cell_local_node = m_connectivity.nodeCellLocalNode();
const Kokkos::View<const unsigned short*> node_nb_cells = m_connectivity.nodeNbCells();
Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
Rdd sum = zero;
for (int j=0; j<node_nb_cells(r); ++j) {
const int J = node_cells(r,j);
const int R = node_cell_local_node(r,j);
sum += Ajr(J,R);
}
m_Ar(r) = sum;
});
return m_Ar;
}
KOKKOS_INLINE_FUNCTION // Fonction qui calcule la somme b_r (le second membre au sommet r)
const Kokkos::View<const Rd*>
computeBr(const Kokkos::View<const Rdd**>& Ajr,
const Kokkos::View<const Rd**>& Cjr,
const Kokkos::View<const Rd*>& uj,
const Kokkos::View<const double*>& pj) {
const Kokkos::View<const unsigned int**>& node_cells = m_connectivity.nodeCells();
const Kokkos::View<const unsigned short**>& node_cell_local_node = m_connectivity.nodeCellLocalNode();
const Kokkos::View<const unsigned short*>& node_nb_cells = m_connectivity.nodeNbCells();
Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
Rd& br = m_br(r);
br = zero;
for (int j=0; j<node_nb_cells(r); ++j) {
const int J = node_cells(r,j);
const int R = node_cell_local_node(r,j);
br += Ajr(J,R)*uj(J) + pj(J)*Cjr(J,R);
}
});
return m_br;
}
/*
Kokkos::View<Rd*> // calcule u_r (vitesse au sommet du maillage et flux de vitesse)
computeUr(const Kokkos::View<const Rdd*>& Ar,
const Kokkos::View<const Rd*>& br) {
inverse(Ar, m_inv_Ar);
const Kokkos::View<const Rdd*> invAr = m_inv_Ar;
Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
m_ur[r]=invAr(r)*br(r);
});
m_ur[0]=zero;
m_ur[m_mesh.numberOfNodes()-1]=zero;
return m_ur;
}
*/
Kokkos::View<Rd*>
computeUr(const Kokkos::View<const Rdd*>& Ar,
const Kokkos::View<const Rd*>& br,
const double& t) {
inverse(Ar, m_inv_Ar);
const Kokkos::View<const Rdd*> invAr = m_inv_Ar;
Kokkos::View<Rd*> xr = m_mesh.xr();
Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
m_ur[r]=invAr(r)*br(r);
});
// Conditions aux limites dependant du temps
m_ur[0]=(-t/((50./9.)-t*t))*xr[0];
m_ur[m_mesh.numberOfNodes()-1] = (-t/((50./9.)-t*t))*xr[m_mesh.numberOfNodes()-1];
return m_ur;
}
Kokkos::View<Rd**> // Fonction qui calcule F_jr
computeFjr(const Kokkos::View<const Rdd**>& Ajr,
const Kokkos::View<const Rd*>& ur,
const Kokkos::View<const Rd**>& Cjr,
const Kokkos::View<const Rd*>& uj,
const Kokkos::View<const double*>& pj) {
const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_connectivity.cellNbNodes();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
for (int r=0; r<cell_nb_nodes[j]; ++r) {
m_Fjr(j,r) = Ajr(j,r)*(uj(j)-ur(cell_nodes(j,r)))+pj(j)*Cjr(j,r);
}
});
return m_Fjr;
}
// Calcul la liste des inverses d'une liste de matrices (pour
// l'instant seulement $R^{1\times 1}$)
void inverse(const Kokkos::View<const Rdd*>& A,
Kokkos::View<Rdd*>& inv_A) const {
Kokkos::parallel_for(A.size(), KOKKOS_LAMBDA(const int& r) {
inv_A(r) = Rdd{1./(A(r)(0,0))};
});
}
// Calcul la liste des inverses d'une liste de reels
void inverse(const Kokkos::View<const double*>& x,
Kokkos::View<double*>& inv_x) const {
Kokkos::parallel_for(x.size(), KOKKOS_LAMBDA(const int& r) {
inv_x(r) = 1./x(r);
});
}
// Enchaine les operations pour calculer les flux (Fjr et ur) pour
// pouvoir derouler le schema
KOKKOS_INLINE_FUNCTION
void computeExplicitFluxes(const Kokkos::View<const Rd*>& xr,
const Kokkos::View<const Rd*>& xj,
const Kokkos::View<const double*>& rhoj,
const Kokkos::View<const Rd*>& uj,
const Kokkos::View<const double*>& pj,
const Kokkos::View<const double*>& cj,
const Kokkos::View<const double*>& Vj,
const Kokkos::View<const Rd**>& Cjr,
const double& t) {
const Kokkos::View<const double*> rhocj = computeRhoCj(rhoj, cj);
const Kokkos::View<const Rdd**> Ajr = computeAjr(rhocj, Cjr);
const Kokkos::View<const Rdd*> Ar = computeAr(Ajr);
const Kokkos::View<const Rd*> br = computeBr(Ajr, Cjr, uj, pj);
Kokkos::View<Rd*> ur = m_ur;
Kokkos::View<Rd**> Fjr = m_Fjr;
//ur = computeUr(Ar, br);
ur = computeUr(Ar, br, t);
Fjr = computeFjr(Ajr, ur, Cjr, uj, pj);
}
Kokkos::View<Rd*> m_br;
Kokkos::View<Rdd**> m_Ajr;
Kokkos::View<Rdd*> m_Ar;
Kokkos::View<Rdd*> m_inv_Ar;
Kokkos::View<Rd**> m_Fjr;
Kokkos::View<Rd*> m_ur;
Kokkos::View<double*> m_rhocj;
Kokkos::View<double*> m_Vj_over_cj;
public:
AcousticSolver(MeshData& mesh_data,
UnknownsType& unknowns)
: m_mesh_data(mesh_data),
m_mesh(mesh_data.mesh()),
m_connectivity(m_mesh.connectivity()),
m_br("br", m_mesh.numberOfNodes()),
m_Ajr("Ajr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()),
m_Ar("Ar", m_mesh.numberOfNodes()),
m_inv_Ar("inv_Ar", m_mesh.numberOfNodes()),
m_Fjr("Fjr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()),
m_ur("ur", m_mesh.numberOfNodes()),
m_rhocj("rho_c", m_mesh.numberOfCells()),
m_Vj_over_cj("Vj_over_cj", m_mesh.numberOfCells())
{
;
}
// Calcule une evaluation du pas de temps verifiant une CFL du type
// c*dt/dx<1. Utilise la reduction definie dans la structure
// ReduceMin. Ici, dx_j=V_j
KOKKOS_INLINE_FUNCTION
double acoustic_dt(const Kokkos::View<const double*>& Vj,
const Kokkos::View<const double*>& cj) const {
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
m_Vj_over_cj[j] = Vj[j]/cj[j];
});
double dt = std::numeric_limits<double>::max();
Kokkos::parallel_reduce(m_mesh.numberOfCells(), ReduceMin(m_Vj_over_cj), dt);
return dt;
}
// Avance la valeur des inconnues pendant un pas de temps dt
void computeNextStep(const double& t, const double& dt,
UnknownsType& unknowns)
{
Kokkos::View<double*> rhoj = unknowns.rhoj();
Kokkos::View<Rd*> uj = unknowns.uj();
Kokkos::View<double*> Ej = unknowns.Ej();
Kokkos::View<double*> ej = unknowns.ej();
Kokkos::View<double*> pj = unknowns.pj();
Kokkos::View<double*> gammaj = unknowns.gammaj();
Kokkos::View<double*> cj = unknowns.cj();
const Kokkos::View<const Rd*> xj = m_mesh_data.xj();
const Kokkos::View<const double*> Vj = m_mesh_data.Vj();
const Kokkos::View<const Rd**> Cjr = m_mesh_data.Cjr();
Kokkos::View<Rd*> xr = m_mesh.xr();
// Calcule les flux
computeExplicitFluxes(xr, xj, rhoj, uj, pj, cj, Vj, Cjr, t);
const Kokkos::View<const Rd**> Fjr = m_Fjr;
const Kokkos::View<const Rd*> ur = m_ur;
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_connectivity.cellNbNodes();
const Kokkos::View<const unsigned int**>& cell_nodes
= m_connectivity.cellNodes();
// Mise a jour de la vitesse et de l'energie totale specifique
const Kokkos::View<const double*> inv_mj = unknowns.invMj();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
Rd momentum_fluxes = zero;
double energy_fluxes = 0;
for (int R=0; R<cell_nb_nodes[j]; ++R) {
const int r=cell_nodes(j,R);
momentum_fluxes += Fjr(j,R);
energy_fluxes += (Fjr(j,R), ur[r]);
}
uj[j] -= (dt*inv_mj[j]) * momentum_fluxes;
Ej[j] -= (dt*inv_mj[j]) * energy_fluxes;
});
// Calcul de e par la formule e = E-0.5 u^2
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
ej[j] = Ej[j] - 0.5 * (uj[j],uj[j]);
});
// deplace le maillage (ses sommets) en utilisant la vitesse
// donnee par le schema
Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r){
xr[r] += dt*ur[r];
});
// met a jour les quantites (geometriques) associees au maillage
m_mesh_data.updateAllData();
// Calcul de rho avec la formule Mj = Vj rhoj
const Kokkos::View<const double*> mj = unknowns.mj();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
rhoj[j] = mj[j]/Vj[j];
});
}
};
#endif // ACOUSTIC_SOLVER_HPP