Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pugs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
code
pugs
Commits
ee48e5b5
Commit
ee48e5b5
authored
Apr 23, 2018
by
Fanny CHOPOT
Browse files
Options
Downloads
Patches
Plain Diff
Code Fjr et Gjr
parent
3e5dc0f6
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/scheme/FiniteVolumesDiffusion.hpp
+49
-71
49 additions, 71 deletions
src/scheme/FiniteVolumesDiffusion.hpp
with
49 additions
and
71 deletions
src/scheme/FiniteVolumesDiffusion.hpp
+
49
−
71
View file @
ee48e5b5
...
@@ -21,7 +21,7 @@
...
@@ -21,7 +21,7 @@
template
<
typename
MeshData
>
// MeshData est le type generique des donnees (geometriques) attachees a un maillage
template
<
typename
MeshData
>
// MeshData est le type generique des donnees (geometriques) attachees a un maillage
class
FiniteVolumesDiffusion
class
FiniteVolumesDiffusion
{
{
typedef
typename
MeshData
::
MeshType
MeshType
;
//
de
type du maillage
typedef
typename
MeshData
::
MeshType
MeshType
;
// type du maillage
typedef
FiniteVolumesEulerUnknowns
<
MeshData
>
UnknownsType
;
// type des inconnues
typedef
FiniteVolumesEulerUnknowns
<
MeshData
>
UnknownsType
;
// type des inconnues
MeshData
&
m_mesh_data
;
// reference vers les donnees attachees du maillage
MeshData
&
m_mesh_data
;
// reference vers les donnees attachees du maillage
...
@@ -73,44 +73,57 @@ private:
...
@@ -73,44 +73,57 @@ private:
}
}
};
};
Kokkos
::
View
<
Rd
**>
// Fonction qui calcule F_jr // A MODIFIER // Ajout de k
Kokkos
::
View
<
Rd
**>
// Fonction qui calcule F_jr
computeFjr
(
const
Kokkos
::
View
<
const
Rdd
**>&
Ajr
,
computeFjr
(
const
Kokkos
::
View
<
const
Rd
**>&
Cjr
,
const
Kokkos
::
View
<
const
Rd
*>&
ur
,
const
Kokkos
::
View
<
const
Rd
**>&
Cjr
,
const
Kokkos
::
View
<
const
Rd
*>&
uj
,
const
Kokkos
::
View
<
const
Rd
*>&
uj
,
const
Kokkos
::
View
<
const
double
*>&
pj
)
{
const
Kokkos
::
View
<
const
double
*>&
Vj
,
const
Kokkos
::
View
<
const
double
*>&
kj
)
{
const
Kokkos
::
View
<
const
unsigned
int
**>&
cell_nodes
=
m_connectivity
.
cellNodes
();
const
Kokkos
::
View
<
const
unsigned
int
**>&
cell_nodes
=
m_connectivity
.
cellNodes
();
const
Kokkos
::
View
<
const
unsigned
short
*>
cell_nb_nodes
const
Kokkos
::
View
<
const
unsigned
short
*>
cell_nb_nodes
=
m_connectivity
.
cellNbNodes
();
=
m_connectivity
.
cellNbNodes
();
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
)
{
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
)
{
for
(
int
r
=
0
;
r
<
cell_nb_nodes
[
j
];
++
r
)
{
for
(
int
r
=
0
;
r
<
cell_nb_nodes
[
j
];
++
r
)
{
m_Fjr
(
j
,
r
)
=
((
kj
r
(
j
,
r
)
*
Cjr
(
j
,
r
)
+
kj
r
(
j
,
r
)
*
Cjr
(
j
,
r
))
/
2
)
*
(
(
uj
r
(
j
,
r
)
*
Cjr
(
j
,
r
)
+
uj
r
(
j
,
r
-
1
)
*
Cjr
(
j
,
r
-
1
))
/
h
(
r
))
;
m_Fjr
(
j
,
r
)
=
((
kj
(
j
,
r
)
+
kj
(
j
,
r
-
1
))
/
(
2
*
Vj
(
j
))
)
*
(
uj
(
j
,
r
)
*
Cjr
(
j
,
r
)
+
uj
(
j
,
r
-
1
)
*
Cjr
(
j
,
r
-
1
));
}
}
});
});
return
m_Fjr
;
return
m_Fjr
;
}
}
Kokkos
::
View
<
Rd
**>
// Fonction qui calcule G_jr // A MODIFIER // Ajout de k
Kokkos
::
View
<
Rd
**>
// Fonction qui calcule G_jr
computeGjr
(
const
Kokkos
::
View
<
const
Rdd
**>&
Ajr
,
computeGjr
(
const
Kokkos
::
View
<
const
Rd
*>&
uj
,
const
Kokkos
::
View
<
const
Rd
*>&
ur
,
const
Kokkos
::
View
<
const
double
*>&
Fjr
,
{
const
Kokkos
::
View
<
const
Rd
**>&
Cjr
,
const
Kokkos
::
View
<
const
Rd
*>&
uj
,
const
Kokkos
::
View
<
const
double
*>&
pj
)
{
const
Kokkos
::
View
<
const
unsigned
int
**>&
cell_nodes
=
m_connectivity
.
cellNodes
();
const
Kokkos
::
View
<
const
unsigned
int
**>&
cell_nodes
=
m_connectivity
.
cellNodes
();
const
Kokkos
::
View
<
const
unsigned
short
*>
cell_nb_nodes
const
Kokkos
::
View
<
const
unsigned
short
*>
cell_nb_nodes
=
m_connectivity
.
cellNbNodes
();
=
m_connectivity
.
cellNbNodes
();
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
)
{
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
)
{
for
(
int
r
=
0
;
r
<
cell_nb_nodes
[
j
];
++
r
)
{
for
(
int
r
=
0
;
r
<
cell_nb_nodes
[
j
];
++
r
)
{
m_Gjr
(
j
,
r
)
=
((
ujr
(
j
,
r
)
*
Cjr
(
j
,
r
)
+
ujr
(
j
,
r
-
1
)
*
Cjr
(
j
,
r
)
)
/
2
)
*
Fjr
(
j
,
r
);
m_Gjr
(
j
,
r
)
=
((
ujr
(
j
,
r
)
+
ujr
(
j
,
r
-
1
))
/
2
)
*
Fjr
(
j
,
r
);
}
}
});
});
return
m_Gjr
;
return
m_Gjr
;
}
}
// Calcul la liste des inverses d'une liste de matrices (pour
// l'instant seulement $R^{1\times 1}$)
void
inverse
(
const
Kokkos
::
View
<
const
Rdd
*>&
A
,
Kokkos
::
View
<
Rdd
*>&
inv_A
)
const
{
Kokkos
::
parallel_for
(
A
.
size
(),
KOKKOS_LAMBDA
(
const
int
&
r
)
{
inv_A
(
r
)
=
Rdd
{
1.
/
(
A
(
r
)(
0
,
0
))};
});
}
// Calcul la liste des inverses d'une liste de reels
void
inverse
(
const
Kokkos
::
View
<
const
double
*>&
x
,
Kokkos
::
View
<
double
*>&
inv_x
)
const
{
Kokkos
::
parallel_for
(
x
.
size
(),
KOKKOS_LAMBDA
(
const
int
&
r
)
{
inv_x
(
r
)
=
1.
/
x
(
r
);
});
}
// Enchaine les operations pour calculer les flux (Fjr et ur) pour // A MODIFIER
// Enchaine les operations pour calculer les flux (Fjr et ur) pour // A MODIFIER
// pouvoir derouler le schema
// pouvoir derouler le schema
...
@@ -119,59 +132,36 @@ private:
...
@@ -119,59 +132,36 @@ private:
const
Kokkos
::
View
<
const
Rd
*>&
xj
,
const
Kokkos
::
View
<
const
Rd
*>&
xj
,
const
Kokkos
::
View
<
const
double
*>&
rhoj
,
const
Kokkos
::
View
<
const
double
*>&
rhoj
,
const
Kokkos
::
View
<
const
Rd
*>&
uj
,
const
Kokkos
::
View
<
const
Rd
*>&
uj
,
const
Kokkos
::
View
<
const
double
*>&
pj
,
const
Kokkos
::
View
<
const
double
*>&
cj
,
const
Kokkos
::
View
<
const
double
*>&
Vj
,
const
Kokkos
::
View
<
const
Rd
**>&
Cjr
)
{
const
Kokkos
::
View
<
const
Rd
**>&
Cjr
)
{
const
Kokkos
::
View
<
const
double
*>
rhocj
=
computeRhoCj
(
rhoj
,
cj
);
const
Kokkos
::
View
<
const
Rdd
**>
Ajr
=
computeAjr
(
rhocj
,
Cjr
);
const
Kokkos
::
View
<
const
Rdd
*>
Ar
=
computeAr
(
Ajr
);
const
Kokkos
::
View
<
const
Rd
*>
br
=
computeBr
(
Ajr
,
Cjr
,
uj
,
pj
);
Kokkos
::
View
<
Rd
*>
ur
=
m_ur
;
Kokkos
::
View
<
Rd
**>
Fjr
=
m_Fjr
;
Kokkos
::
View
<
Rd
**>
Fjr
=
m_Fjr
;
ur
=
computeUr
(
Ar
,
br
);
Fjr
=
computeFjr
(
Cjr
,
uj
,
xj
,
kj
);
Fjr
=
computeFjr
(
Ajr
,
ur
,
Cjr
,
uj
,
pj
);
Kokkos
::
View
<
Rd
**>
Gjr
=
m_Gjr
;
Gjr
=
computeGjr
(
uj
,
Fjr
);
}
}
Kokkos
::
View
<
Rd
*>
m_br
;
Kokkos
::
View
<
Rdd
**>
m_Ajr
;
Kokkos
::
View
<
Rdd
*>
m_Ar
;
Kokkos
::
View
<
Rdd
*>
m_inv_Ar
;
Kokkos
::
View
<
Rd
**>
m_Fjr
;
Kokkos
::
View
<
Rd
**>
m_Fjr
;
Kokkos
::
View
<
Rd
*>
m_ur
;
Kokkos
::
View
<
double
*>
m_CFL
;
Kokkos
::
View
<
double
*>
m_rhocj
;
Kokkos
::
View
<
double
*>
m_Vj_over_cj
;
public
:
public
:
Acoustic
Solver
(
MeshData
&
mesh_data
,
Diffusion
Solver
(
MeshData
&
mesh_data
,
UnknownsType
&
unknowns
)
UnknownsType
&
unknowns
)
:
m_mesh_data
(
mesh_data
),
:
m_mesh_data
(
mesh_data
),
m_mesh
(
mesh_data
.
mesh
()),
m_mesh
(
mesh_data
.
mesh
()),
m_connectivity
(
m_mesh
.
connectivity
()),
m_connectivity
(
m_mesh
.
connectivity
()),
m_br
(
"br"
,
m_mesh
.
numberOfNodes
()),
m_Ajr
(
"Ajr"
,
m_mesh
.
numberOfCells
(),
m_connectivity
.
maxNbNodePerCell
()),
m_Ar
(
"Ar"
,
m_mesh
.
numberOfNodes
()),
m_inv_Ar
(
"inv_Ar"
,
m_mesh
.
numberOfNodes
()),
m_Fjr
(
"Fjr"
,
m_mesh
.
numberOfCells
(),
m_connectivity
.
maxNbNodePerCell
()),
m_Fjr
(
"Fjr"
,
m_mesh
.
numberOfCells
(),
m_connectivity
.
maxNbNodePerCell
()),
m_ur
(
"ur"
,
m_mesh
.
numberOfNodes
()),
m_CFL
(
"CFL"
,
m_mesh
.
numberOfCells
())
m_rhocj
(
"rho_c"
,
m_mesh
.
numberOfCells
()),
m_Vj_over_cj
(
"Vj_over_cj"
,
m_mesh
.
numberOfCells
())
{
{
;
;
}
}
// Calcule une evaluation du pas de temps verifiant une CFL du type
// Calcule une evaluation du pas de temps verifiant le CFL parabolique
// c*dt/dx<1. Utilise la reduction definie dans la structure // A MODIFIER
// Utilise la reduction definie dans la structure ReduceMin. Ici, dx_j=V_j
// ReduceMin. Ici, dx_j=V_j
KOKKOS_INLINE_FUNCTION
KOKKOS_INLINE_FUNCTION
double
acoustic_dt
(
const
Kokkos
::
View
<
const
double
*>&
Vj
,
double
diffusion_dt
(
const
Kokkos
::
View
<
const
double
*>&
Vj
)
const
{
const
Kokkos
::
View
<
const
double
*>&
cj
)
const
{
Kokkos
::
View
<
double
*>
dt_j
(
"dt_j"
,
m_mesh
.
numberOfCells
());
Kokkos
::
View
<
double
*>
dt_j
(
"dt_j"
,
m_mesh
.
numberOfCells
());
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
){
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
){
m_
Vj_over_cj
[
j
]
=
V
j
[
j
]
/
cj
[
j
]
;
// La tu mets la formule pour chaque maille
m_
CFL
[
j
]
=
rho
j
[
j
]
*
(
xr
(
r
)
;
// La tu mets la formule pour chaque maille
// CONFUSION j et r !!!
});
});
double
dt
=
std
::
numeric_limits
<
double
>::
max
();
double
dt
=
std
::
numeric_limits
<
double
>::
max
();
...
@@ -189,9 +179,7 @@ public:
...
@@ -189,9 +179,7 @@ public:
Kokkos
::
View
<
double
*>
Ej
=
unknowns
.
Ej
();
Kokkos
::
View
<
double
*>
Ej
=
unknowns
.
Ej
();
Kokkos
::
View
<
double
*>
ej
=
unknowns
.
ej
();
Kokkos
::
View
<
double
*>
ej
=
unknowns
.
ej
();
Kokkos
::
View
<
double
*>
pj
=
unknowns
.
pj
();
Kokkos
::
View
<
double
*>
gammaj
=
unknowns
.
gammaj
();
Kokkos
::
View
<
double
*>
gammaj
=
unknowns
.
gammaj
();
Kokkos
::
View
<
double
*>
cj
=
unknowns
.
cj
();
const
Kokkos
::
View
<
const
Rd
*>
xj
=
m_mesh_data
.
xj
();
const
Kokkos
::
View
<
const
Rd
*>
xj
=
m_mesh_data
.
xj
();
const
Kokkos
::
View
<
const
double
*>
Vj
=
m_mesh_data
.
Vj
();
const
Kokkos
::
View
<
const
double
*>
Vj
=
m_mesh_data
.
Vj
();
...
@@ -199,10 +187,9 @@ public:
...
@@ -199,10 +187,9 @@ public:
Kokkos
::
View
<
Rd
*>
xr
=
m_mesh
.
xr
();
Kokkos
::
View
<
Rd
*>
xr
=
m_mesh
.
xr
();
// Calcule les flux
// Calcule les flux
computeExplicitFluxes
(
xr
,
xj
,
rhoj
,
uj
,
pj
,
cj
,
Vj
,
Cjr
);
computeExplicitFluxes
(
xr
,
xj
,
rhoj
,
uj
,
Vj
,
Cjr
);
const
Kokkos
::
View
<
const
Rd
**>
Fjr
=
m_Fjr
;
const
Kokkos
::
View
<
const
Rd
**>
Fjr
=
m_Fjr
;
const
Kokkos
::
View
<
const
Rd
*>
ur
=
m_ur
;
const
Kokkos
::
View
<
const
unsigned
short
*>
cell_nb_nodes
const
Kokkos
::
View
<
const
unsigned
short
*>
cell_nb_nodes
=
m_connectivity
.
cellNbNodes
();
=
m_connectivity
.
cellNbNodes
();
const
Kokkos
::
View
<
const
unsigned
int
**>&
cell_nodes
const
Kokkos
::
View
<
const
unsigned
int
**>&
cell_nodes
...
@@ -227,15 +214,6 @@ public:
...
@@ -227,15 +214,6 @@ public:
ej
[
j
]
=
Ej
[
j
]
-
0.5
*
(
uj
[
j
],
uj
[
j
]);
ej
[
j
]
=
Ej
[
j
]
-
0.5
*
(
uj
[
j
],
uj
[
j
]);
});
});
// deplace le maillage (ses sommets) en utilisant la vitesse
// donnee par le schema
Kokkos
::
parallel_for
(
m_mesh
.
numberOfNodes
(),
KOKKOS_LAMBDA
(
const
int
&
r
){
xr
[
r
]
+=
dt
*
ur
[
r
];
});
// met a jour les quantites (geometriques) associees au maillage
m_mesh_data
.
updateAllData
();
// Calcul de rho avec la formule Mj = Vj rhoj
// Calcul de rho avec la formule Mj = Vj rhoj
const
Kokkos
::
View
<
const
double
*>
mj
=
unknowns
.
mj
();
const
Kokkos
::
View
<
const
double
*>
mj
=
unknowns
.
mj
();
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
){
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
){
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment