Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pugs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
code
pugs
Commits
e0d7cfed
Commit
e0d7cfed
authored
2 years ago
by
Emmanuel Labourasse
Browse files
Options
Downloads
Patches
Plain Diff
add features for 3D polynomials except offstream
parent
2cfa61f3
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/analysis/PolynomialP.hpp
+147
-193
147 additions, 193 deletions
src/analysis/PolynomialP.hpp
with
147 additions
and
193 deletions
src/analysis/PolynomialP.hpp
+
147
−
193
View file @
e0d7cfed
...
...
@@ -161,11 +161,12 @@ class PolynomialP
size_t
total_degree
=
relative_pos
[
0
]
+
relative_pos
[
1
];
absolute_position
=
total_degree
*
(
total_degree
+
1
)
/
2
+
relative_pos
[
1
];
}
else
{
throw
NotImplementedError
(
"Not yet Available in 3D"
);
// static_assert(Dimension == 3);
// size_t total_degree = relative_pos[0] + relative_pos[1] + relative_pos[2];
// return (total_degree + 1) * (total_degree + 2) * (total_degree + 3) / 6 + relative_pos[1];
// return (N + 1) * (N + 2) * (N + 3) / 6;
// throw NotImplementedError("Not yet Available in 3D");
static_assert
(
Dimension
==
3
);
size_t
total_degree
=
relative_pos
[
0
]
+
relative_pos
[
1
]
+
relative_pos
[
2
];
size_t
total_sub_degree
=
relative_pos
[
1
]
+
relative_pos
[
2
];
return
total_degree
*
(
total_degree
+
1
)
*
(
total_degree
+
2
)
/
6
+
total_sub_degree
*
(
total_sub_degree
+
1
)
/
2
+
relative_pos
[
2
];
}
return
absolute_coefs
[
absolute_position
];
...
...
@@ -191,11 +192,12 @@ class PolynomialP
size_t
total_degree
=
relative_pos
[
0
]
+
relative_pos
[
1
];
absolute_position
=
total_degree
*
(
total_degree
+
1
)
/
2
+
relative_pos
[
1
];
}
else
{
throw
NotImplementedError
(
"Not yet Available in 3D"
);
// static_assert(Dimension == 3);
// size_t total_degree = relative_pos[0] + relative_pos[1] + relative_pos[2];
// return (total_degree + 1) * (total_degree + 2) * (total_degree + 3) / 6 + relative_pos[1];
// return (N + 1) * (N + 2) * (N + 3) / 6;
// throw NotImplementedError("Not yet Available in 3D");
static_assert
(
Dimension
==
3
);
size_t
total_degree
=
relative_pos
[
0
]
+
relative_pos
[
1
]
+
relative_pos
[
2
];
size_t
total_sub_degree
=
relative_pos
[
1
]
+
relative_pos
[
2
];
absolute_position
=
total_degree
*
(
total_degree
+
1
)
*
(
total_degree
+
2
)
/
6
+
total_sub_degree
*
(
total_sub_degree
+
1
)
/
2
+
relative_pos
[
2
];
}
return
absolute_coefs
[
absolute_position
];
...
...
@@ -219,11 +221,12 @@ class PolynomialP
}
else
if
constexpr
(
Dimension
==
2
)
{
abs_pos
=
total_degree
*
(
total_degree
+
1
)
/
2
+
relative_pos
[
1
];
}
else
{
throw
NotImplementedError
(
"Not yet Available in 3D"
);
// static_assert(Dimension == 3);
// size_t total_degree = relative_pos[0] + relative_pos[1] + relative_pos[2];
// return (total_degree + 1) * (total_degree + 2) * (total_degree + 3) / 6 + relative_pos[1];
// return (N + 1) * (N + 2) * (N + 3) / 6;
static_assert
(
Dimension
==
3
);
size_t
total_degree
=
relative_pos
[
0
]
+
relative_pos
[
1
]
+
relative_pos
[
2
];
size_t
total_sub_degree
=
relative_pos
[
1
]
+
relative_pos
[
2
];
abs_pos
=
total_degree
*
(
total_degree
+
1
)
*
(
total_degree
+
2
)
/
6
+
total_sub_degree
*
(
total_sub_degree
+
1
)
/
2
+
relative_pos
[
2
];
// throw NotImplementedError("Not yet Available in 3D");
}
return
abs_pos
;
...
...
@@ -275,22 +278,19 @@ class PolynomialP
}
}
PUGS_INLINE
constexpr
auto
PUGS_INLINE
constexpr
PolynomialP
<
N
,
Dimension
>
derivative
(
const
size_t
var
)
const
{
const
auto
P
=
*
this
;
TinyVector
<
size_coef
>
coefs
(
zero
);
PolynomialP
<
N
,
Dimension
>
Q
(
coefs
);
if
constexpr
(
N
==
0
)
{
return
Q
;
}
else
{
if
constexpr
(
N
!=
0
)
{
Assert
(
var
<
Dimension
,
"You can not derive a polynomial with respect to a variable of rank greater than the dimension"
);
if
constexpr
(
Dimension
==
1
)
{
for
(
size_t
i
=
0
;
i
<
size_coef
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
size_coef
-
1
;
++
i
)
{
coefs
[
i
]
=
double
(
i
+
1
)
*
P
.
coefficients
()[
i
+
1
];
}
return
Q
;
}
else
if
constexpr
(
Dimension
==
2
)
{
if
(
var
==
0
)
{
for
(
size_t
i
=
0
;
i
<
N
;
++
i
)
{
...
...
@@ -313,12 +313,50 @@ class PolynomialP
}
}
}
return
Q
;
}
else
{
throw
NotImplementedError
(
"Not yet Available in 3D"
);
static_assert
(
Dimension
==
3
);
if
(
var
==
0
)
{
for
(
size_t
i
=
0
;
i
<
N
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
N
-
i
;
++
j
)
{
for
(
size_t
k
=
0
;
k
<
N
-
i
-
j
;
++
k
)
{
TinyVector
<
Dimension
,
size_t
>
relative_pos
(
i
,
j
,
k
);
TinyVector
<
Dimension
,
size_t
>
relative_posp
(
i
+
1
,
j
,
k
);
size_t
absolute_position
=
Q
.
absolute_position
(
relative_pos
);
size_t
absolute_positionp
=
P
.
absolute_position
(
relative_posp
);
Q
.
coefficients
()[
absolute_position
]
=
double
(
i
+
1
)
*
m_coefficients
[
absolute_positionp
];
}
}
}
}
else
if
(
var
==
1
)
{
for
(
size_t
i
=
0
;
i
<
N
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
N
-
i
;
++
j
)
{
for
(
size_t
k
=
0
;
k
<
N
-
i
-
j
;
++
k
)
{
TinyVector
<
Dimension
,
size_t
>
relative_pos
(
i
,
j
,
k
);
TinyVector
<
Dimension
,
size_t
>
relative_posp
(
i
,
j
+
1
,
k
);
size_t
absolute_position
=
Q
.
absolute_position
(
relative_pos
);
size_t
absolute_positionp
=
P
.
absolute_position
(
relative_posp
);
Q
.
coefficients
()[
absolute_position
]
=
double
(
j
+
1
)
*
m_coefficients
[
absolute_positionp
];
}
}
}
}
else
{
for
(
size_t
i
=
0
;
i
<
N
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
N
-
i
;
++
j
)
{
for
(
size_t
k
=
0
;
k
<
N
-
i
-
j
;
++
k
)
{
TinyVector
<
Dimension
,
size_t
>
relative_pos
(
i
,
j
,
k
);
TinyVector
<
Dimension
,
size_t
>
relative_posp
(
i
,
j
,
k
+
1
);
size_t
absolute_position
=
Q
.
absolute_position
(
relative_pos
);
size_t
absolute_positionp
=
P
.
absolute_position
(
relative_posp
);
Q
.
coefficients
()[
absolute_position
]
=
double
(
k
+
1
)
*
m_coefficients
[
absolute_positionp
];
}
}
}
}
// throw NotImplementedError("Not yet Available in 3D");
}
}
return
Q
;
}
PUGS_INLINE
constexpr
friend
std
::
ostream
&
...
...
@@ -445,181 +483,97 @@ class PolynomialP
return
os
;
}
else
{
throw
NotImplementedError
(
"Not yet Available in 3D"
);
}
}
PUGS_INLINE
constexpr
PolynomialP
()
noexcept
=
default
;
~
PolynomialP
()
=
default
;
};
// template <size_t M>
// PUGS_INLINE constexpr friend void
// divide(const PolynomialP<N>& P1, const PolynomialP<M>& P2, PolynomialP<N>& Q, PolynomialP<N>& R)
// {
// const size_t Nr = P1.realDegree();
// const size_t Mr = P2.realDegree();
// R.coefficients() = P1.coefficients();
// Q.coefficients() = zero;
// for (ssize_t k = Nr - Mr; k >= 0; --k) {
// Q.coefficients()[k] = R.coefficients()[Mr + k] / P2.coefficients()[Mr];
// for (ssize_t j = Mr + k; j >= k; --j) {
// R.coefficients()[j] -= Q.coefficients()[k] * P2.coefficients()[j - k];
// }
// size_t i = 0;
// size_t j = 0;
// size_t k = N;
// TinyVector<Dimension, size_t> rel_pos(i, j, k);
// double coef = P[rel_pos];
// if (coef != 0.) {
// if (coef < 0.) {
// os << " - ";
// }
//
for (size_t j = Mr; j <= Nr; ++j
) {
//
R.coefficients()[j] = 0
;
// if (coef != 1 && coef != -1
) {
//
os << std::abs(coef)
;
// }
// os << "z^" << N;
// }
// PUGS_INLINE
// constexpr friend PolynomialP<N + 1>
// primitive(const PolynomialP<N>& P)
// {
// TinyVector<N + 2> coefs;
// for (size_t i = 0; i < N + 1; ++i) {
// coefs[i + 1] = P.coefficients()[i] / double(i + 1);
// size_t degree = N;
// for (size_t l = size_coef - 1; l > 0; --l) {
// if (k > 0) {
// k--;
// if (j < k) {
// j++;
// } else {
// j--;
// i++;
// }
// coefs[0] = 0;
// return PolynomialP<N + 1>{coefs};
// } else {
// degree--;
// k = degree;
// i = 0;
// j = 0;
// }
// PUGS_INLINE
// constexpr friend std::ostream&
// operator<<(std::ostream& os, const PolynomialP<N>& P)
// {
// // os << "P(x) = ";
// bool all_coef_zero = true;
// if (N == 0) {
// os << P.coefficients()[0];
// return os;
// }
// if (N != 1) {
// if (P.coefficients()[N] != 0.) {
// if (P.coefficients()[N] < 0.) {
// os << "- ";
// }
// if (P.coefficients()[N] != 1 && P.coefficients()[N] != -1) {
// os << std::abs(P.coefficients()[N]);
// }
// os << "x^" << N;
// all_coef_zero = false;
// }
// }
// for (size_t i = N - 1; i > 1; --i) {
// if (P.coefficients()[i] != 0.) {
// if (P.coefficients()[i] > 0.) {
// rel_pos = TinyVector<Dimension, size_t>(i, j, k);
// double coef = P[rel_pos];
// if (coef != 0.) {
// if (coef > 0.) {
// os << " + ";
//
} else if (
P.
coef
ficients()[i]
< 0.) {
//
} else if (coef < 0.) {
// os << " - ";
// }
//
if (
P.
coef
ficients()[i]
!= 1 &&
P.
coef
ficients()[i] != -1
) {
//
os << std::abs(
P.
coef
ficients()[i]
);
//
if (
(
coef != 1 && coef
!= -1) || (i == 0 && j == 0 && k == 0)
) {
//
os << std::abs(coef);
// }
// if (i == 0 && j == 0 && k == 0)
// continue;
// if (i == 0 && j == 0) {
// if (k != 1) {
// os << "z^" << j;
// } else {
// os << "z";
// }
// } else if (i == 0 && k == 0) {
// if (j == 1) {
// os << "y";
// } else {
// os << "y^" << i;
// }
// } else if (j == 0 && k == 0) {
// if (i == 1) {
// os << "x";
// } else {
// os << "x^" << i;
// all_coef_zero = false;
// }
// }
// if (P.coefficients()[1] != 0.) {
// if (P.coefficients()[1] > 0. && N != 1) {
// os << " + ";
// } else if (P.coefficients()[1] < 0.) {
// os << " - ";
// } else {
// if (i == 1 && j == 1 && k == 1) {
// os << "xyz";
// } else if (i == 1) {
// os << "x"
// << "y^" << j << "z^" << k;
// } else if (j == 1) {
// os << "x^" << i << "y"
// << "z^" << k;
// } else if (k == 1) {
// os << "x^" << i << "y^" << j << "z";
// } else {
// os << "x^" << i << "y^" << j << "z^" << k;
// }
// if (P.coefficients()[1] != 1 && P.coefficients()[1] != -1) {
// os << std::abs(P.coefficients()[1]);
// }
// os << "x";
// all_coef_zero = false;
// }
// if (P.coefficients()[0] != 0. || all_coef_zero) {
// if (P.coefficients()[0] > 0.) {
// os << " + ";
// } else if (P.coefficients()[0] < 0.) {
// os << " - ";
// }
// os << std::abs(P.coefficients()[0]);
// }
// return os;
// }
// PUGS_INLINE
// constexpr friend void
// lagrangeBasis(const TinyVector<N + 1> zeros, TinyVector<N + 1, PolynomialP<N>>& basis)
// {
// PolynomialP<N> lj;
// for (size_t j = 0; j < N + 1; ++j) {
// basis[j] = lagrangePolynomialP(zeros, j);
// }
// }
// PUGS_INLINE
// constexpr friend PolynomialP<N>
// lagrangeToCanonical(const TinyVector<N + 1> lagrange_coefs, const TinyVector<N + 1, PolynomialP<N>>& basis)
// {
// PolynomialP<N> P(zero);
// // lagrangeBasis({0, 0, 0}, basis);
// for (size_t j = 0; j < N + 1; ++j) {
// P += basis[j] * lagrange_coefs[j];
// }
// return P;
// }
// template <size_t N>
// PUGS_INLINE constexpr PolynomialP<N> lagrangePolynomialP(const TinyVector<N + 1> zeros, const size_t k);
// template <size_t N>
// PUGS_INLINE constexpr TinyVector<N, PolynomialP<N - 1>>
// lagrangeBasis(const TinyVector<N>& zeros)
// {
// static_assert(N >= 1, "invalid degree");
// TinyVector<N, PolynomialP<N - 1>> basis;
// PolynomialP<N - 1> lj;
// for (size_t j = 0; j < N; ++j) {
// basis[j] = lagrangePolynomialP<N - 1>(zeros, j);
// }
// return basis;
// }
// template <size_t N>
// PUGS_INLINE constexpr double
// integrate(const PolynomialP<N>& P, const double& xinf, const double& xsup)
// {
// PolynomialP<N + 1> Q = primitive(P);
// return (Q(xsup) - Q(xinf));
// }
// template <size_t N>
// PUGS_INLINE constexpr double
// symmetricIntegrate(const PolynomialP<N>& P, const double& delta)
// {
// Assert(delta > 0, "A positive delta is needed for symmetricIntegrate");
// double integral = 0.;
// for (size_t i = 0; i <= N; ++i) {
// if (i % 2 == 0)
// integral += 2. * P.coefficients()[i] * std::pow(delta, i + 1) / (i + 1);
// }
// return integral;
// }
//
for
(
size_t
l
=
0
;
l
<
size_coef
;
++
l
)
{
double
coef
=
P
.
coefficients
()[
l
];
os
<<
coef
<<
" "
;
}
return
os
;
// throw NotImplementedError("Not yet Available in 3D");
}
}
// template <size_t N>
// PUGS_INLINE constexpr PolynomialP<N>
// lagrangePolynomialP(const TinyVector<N + 1> zeros, const size_t k)
// {
// for (size_t i = 0; i < N; ++i) {
// Assert(zeros[i] < zeros[i + 1], "Interpolation values must be strictly increasing in Lagrange polynomialPs");
// }
// PolynomialP<N> lk;
// lk.coefficients() = zero;
// lk.coefficients()[0] = 1;
// for (size_t i = 0; i < N + 1; ++i) {
// if (k == i)
// continue;
// double factor = 1. / (zeros[k] - zeros[i]);
// PolynomialP<1> P({-zeros[i] * factor, factor});
// lk *= P;
// }
// return lk;
// }
PUGS_INLINE
constexpr
PolynomialP
()
noexcept
=
default
;
~
PolynomialP
()
=
default
;
};
#endif // POLYNOMIALP_HPP
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment