Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pugs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
code
pugs
Commits
a127bf5a
Commit
a127bf5a
authored
Apr 23, 2018
by
Fanny CHOPOT
Browse files
Options
Downloads
Patches
Plain Diff
Creation fichier essai 2
parent
f451fe09
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/scheme/FiniteVolumesDiffusion.hpp
+345
-0
345 additions, 0 deletions
src/scheme/FiniteVolumesDiffusion.hpp
with
345 additions
and
0 deletions
src/scheme/FiniteVolumesDiffusion.hpp
0 → 100644
+
345
−
0
View file @
a127bf5a
#ifndef FINITE_VOLUMES_DIFFUSION_HPP
#define FINITE_VOLUMES_DIFFUSION_HPP
// --- INCLUSION fichiers headers ---
#include
<Kokkos_Core.hpp>
#include
<rang.hpp>
#include
<BlockPerfectGas.hpp>
#include
<TinyVector.hpp>
#include
<TinyMatrix.hpp>
#include
<Mesh.hpp>
#include
<MeshData.hpp>
#include
<FiniteVolumesEulerUnknowns.hpp>
// ---------------------------------
// Creation classe FiniteVolumesDiffusion
template
<
typename
MeshData
>
// MeshData est le type generique des donnees (geometriques) attachees a un maillage
class
FiniteVolumesDiffusion
{
typedef
typename
MeshData
::
MeshType
MeshType
;
// de type du maillage
typedef
FiniteVolumesEulerUnknowns
<
MeshData
>
UnknownsType
;
// type des inconnues
MeshData
&
m_mesh_data
;
//reference vers les donnees attachees du maillage
const
MeshType
&
m_mesh
;
// reference vers le maillage
const
typename
MeshType
::
Connectivity
&
m_connectivity
;
// references vers la connectivite
constexpr
static
size_t
dimension
=
MeshType
::
dimension
;
// dimension du maillage (connue a la compilation)
typedef
TinyVector
<
dimension
>
Rd
;
// type de petits vecteurs (de dimension MeshType::dimension)
typedef
TinyMatrix
<
dimension
>
Rdd
;
// type de petites matrices
private:
// Sert a calculer les reductions (en gros calculer le min sur des
// vecteurs en parallele) Ne pas regarder plus comment ca marche.
struct
ReduceMin
{
private:
const
Kokkos
::
View
<
const
double
*>
x_
;
public:
typedef
Kokkos
::
View
<
const
double
*>::
non_const_value_type
value_type
;
ReduceMin
(
const
Kokkos
::
View
<
const
double
*>&
x
)
:
x_
(
x
)
{}
typedef
Kokkos
::
View
<
const
double
*>::
size_type
size_type
;
KOKKOS_INLINE_FUNCTION
void
operator
()
(
const
size_type
i
,
value_type
&
update
)
const
{
if
(
x_
(
i
)
<
update
)
{
update
=
x_
(
i
);
}
}
KOKKOS_INLINE_FUNCTION
void
join
(
volatile
value_type
&
dst
,
const
volatile
value_type
&
src
)
const
{
if
(
src
<
dst
)
{
dst
=
src
;
}
}
KOKKOS_INLINE_FUNCTION
void
init
(
value_type
&
dst
)
const
{
// The identity under max is -Inf.
dst
=
Kokkos
::
reduction_identity
<
value_type
>::
min
();
}
};
// KOKKOS_INLINE_FUNCTION // Fonction qui calcule (rho c)_j
//const Kokkos::View<const double*>
//computeRhoCj(const Kokkos::View<const double*>& rhoj,
// const Kokkos::View<const double*>& cj)
//{
// Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
// m_rhocj[j] = rhoj[j]*cj[j];
// });
// return m_rhocj;
//}
// KOKKOS_INLINE_FUNCTION // Fonction qui calcule A_jr
//const Kokkos::View<const Rdd**>
//computeAjr(const Kokkos::View<const double*>& rhocj,
// const Kokkos::View<const Rd**>& Cjr) {
//const Kokkos::View<const unsigned short*> cell_nb_nodes
// = m_connectivity.cellNbNodes();
//Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
// for (int r=0; r<cell_nb_nodes[j]; ++r) {
// m_Ajr(j,r) = tensorProduct(rhocj(j)*Cjr(j,r), Cjr(j,r));
// }
// });
//return m_Ajr;
//}
// KOKKOS_INLINE_FUNCTION // Fonction qui calcule A_r (la matrice locale au sommet r)
//const Kokkos::View<const Rdd*>
//computeAr(const Kokkos::View<const Rdd**>& Ajr) {
//const Kokkos::View<const unsigned int**> node_cells = m_connectivity.nodeCells();
//const Kokkos::View<const unsigned short**> node_cell_local_node = m_connectivity.nodeCellLocalNode();
//const Kokkos::View<const unsigned short*> node_nb_cells = m_connectivity.nodeNbCells();
//Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
// Rdd sum = zero;
// for (int j=0; j<node_nb_cells(r); ++j) {
// const int J = node_cells(r,j);
// const int R = node_cell_local_node(r,j);
// sum += Ajr(J,R);
// }
// m_Ar(r) = sum;
// });
//return m_Ar;
//}
//KOKKOS_INLINE_FUNCTION // Fonction qui calcule la somme b_r (le second membre au sommet r)
//const Kokkos::View<const Rd*>
//computeBr(const Kokkos::View<const Rdd**>& Ajr,
// const Kokkos::View<const Rd**>& Cjr,
// const Kokkos::View<const Rd*>& uj,
// const Kokkos::View<const double*>& pj) {
//const Kokkos::View<const unsigned int**>& node_cells = m_connectivity.nodeCells();
//const Kokkos::View<const unsigned short**>& node_cell_local_node = m_connectivity.nodeCellLocalNode();
//const Kokkos::View<const unsigned short*>& node_nb_cells = m_connectivity.nodeNbCells();
//Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
// Rd& br = m_br(r);
// br = zero;
// for (int j=0; j<node_nb_cells(r); ++j) {
// const int J = node_cells(r,j);
// const int R = node_cell_local_node(r,j);
// br += Ajr(J,R)*uj(J) + pj(J)*Cjr(J,R);
// }
// });
//return m_br;
//}
//Kokkos::View<Rd*> // calcule u_r (vitesse au sommet r, pour se deplacer)
//computeUr(const Kokkos::View<const Rdd*>& Ar,
// const Kokkos::View<const Rd*>& br) {
//inverse(Ar, m_inv_Ar);
//const Kokkos::View<const Rdd*> invAr = m_inv_Ar;
//Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
// m_ur[r]=invAr(r)*br(r);
//});
//m_ur[0]=zero;
//m_ur[m_mesh.numberOfNodes()-1]=zero;
//return m_ur;
//}
Kokkos
::
View
<
Rd
**>
// Fonction qui calcule F_jr // A MODIFIER
computeFjr
(
const
Kokkos
::
View
<
const
Rdd
**>&
Ajr
,
const
Kokkos
::
View
<
const
Rd
*>&
ur
,
const
Kokkos
::
View
<
const
Rd
**>&
Cjr
,
const
Kokkos
::
View
<
const
Rd
*>&
uj
,
const
Kokkos
::
View
<
const
double
*>&
pj
)
{
const
Kokkos
::
View
<
const
unsigned
int
**>&
cell_nodes
=
m_connectivity
.
cellNodes
();
const
Kokkos
::
View
<
const
unsigned
short
*>
cell_nb_nodes
=
m_connectivity
.
cellNbNodes
();
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
)
{
for
(
int
r
=
0
;
r
<
cell_nb_nodes
[
j
];
++
r
)
{
m_Fjr
(
j
,
r
)
=
((
kjr
(
j
,
r
)
*
Cjr
(
j
,
r
)
+
kjr
(
j
,
r
)
*
Cjr
(
j
,
r
))
/
2
)
*
((
ujr
(
j
,
r
)
*
Cjr
(
j
,
r
)
+
ujr
(
j
,
r
-
1
)
*
Cjr
(
j
,
r
-
1
))
/
h
(
r
));
}
});
return
m_Fjr
;
}
Kokkos
::
View
<
Rd
**>
// Fonction qui calcule G_jr // A MODIFIER
computeGjr
(
const
Kokkos
::
View
<
const
Rdd
**>&
Ajr
,
const
Kokkos
::
View
<
const
Rd
*>&
ur
,
const
Kokkos
::
View
<
const
Rd
**>&
Cjr
,
const
Kokkos
::
View
<
const
Rd
*>&
uj
,
const
Kokkos
::
View
<
const
double
*>&
pj
)
{
const
Kokkos
::
View
<
const
unsigned
int
**>&
cell_nodes
=
m_connectivity
.
cellNodes
();
const
Kokkos
::
View
<
const
unsigned
short
*>
cell_nb_nodes
=
m_connectivity
.
cellNbNodes
();
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
)
{
for
(
int
r
=
0
;
r
<
cell_nb_nodes
[
j
];
++
r
)
{
m_Gjr
(
j
,
r
)
=
((
ujr
(
j
,
r
)
*
Cjr
(
j
,
r
)
+
ujr
(
j
,
r
-
1
)
*
Cjr
(
j
,
r
))
/
2
)
*
Fjr
(
j
,
r
);
}
});
return
m_Gjr
;
}
// Calcul la liste des inverses d'une liste de matrices (pour
// l'instant seulement $R^{1\times 1}$)
//void inverse(const Kokkos::View<const Rdd*>& A,
// Kokkos::View<Rdd*>& inv_A) const {
//Kokkos::parallel_for(A.size(), KOKKOS_LAMBDA(const int& r) {
// inv_A(r) = Rdd{1./(A(r)(0,0))};
// });
//}
// Calcul la liste des inverses d'une liste de reels
// void inverse(const Kokkos::View<const double*>& x,
// Kokkos::View<double*>& inv_x) const {
//Kokkos::parallel_for(x.size(), KOKKOS_LAMBDA(const int& r) {
// inv_x(r) = 1./x(r);
// });
// }
// Enchaine les operations pour calculer les flux (Fjr et ur) pour // A MODIFIER
// pouvoir derouler le schema
KOKKOS_INLINE_FUNCTION
void
computeExplicitFluxes
(
const
Kokkos
::
View
<
const
Rd
*>&
xr
,
const
Kokkos
::
View
<
const
Rd
*>&
xj
,
const
Kokkos
::
View
<
const
double
*>&
rhoj
,
const
Kokkos
::
View
<
const
Rd
*>&
uj
,
const
Kokkos
::
View
<
const
double
*>&
pj
,
const
Kokkos
::
View
<
const
double
*>&
cj
,
const
Kokkos
::
View
<
const
double
*>&
Vj
,
const
Kokkos
::
View
<
const
Rd
**>&
Cjr
)
{
const
Kokkos
::
View
<
const
double
*>
rhocj
=
computeRhoCj
(
rhoj
,
cj
);
const
Kokkos
::
View
<
const
Rdd
**>
Ajr
=
computeAjr
(
rhocj
,
Cjr
);
const
Kokkos
::
View
<
const
Rdd
*>
Ar
=
computeAr
(
Ajr
);
const
Kokkos
::
View
<
const
Rd
*>
br
=
computeBr
(
Ajr
,
Cjr
,
uj
,
pj
);
Kokkos
::
View
<
Rd
*>
ur
=
m_ur
;
Kokkos
::
View
<
Rd
**>
Fjr
=
m_Fjr
;
ur
=
computeUr
(
Ar
,
br
);
Fjr
=
computeFjr
(
Ajr
,
ur
,
Cjr
,
uj
,
pj
);
}
Kokkos
::
View
<
Rd
*>
m_br
;
Kokkos
::
View
<
Rdd
**>
m_Ajr
;
Kokkos
::
View
<
Rdd
*>
m_Ar
;
Kokkos
::
View
<
Rdd
*>
m_inv_Ar
;
Kokkos
::
View
<
Rd
**>
m_Fjr
;
Kokkos
::
View
<
Rd
*>
m_ur
;
Kokkos
::
View
<
double
*>
m_rhocj
;
Kokkos
::
View
<
double
*>
m_Vj_over_cj
;
public
:
AcousticSolver
(
MeshData
&
mesh_data
,
UnknownsType
&
unknowns
)
:
m_mesh_data
(
mesh_data
),
m_mesh
(
mesh_data
.
mesh
()),
m_connectivity
(
m_mesh
.
connectivity
()),
m_br
(
"br"
,
m_mesh
.
numberOfNodes
()),
m_Ajr
(
"Ajr"
,
m_mesh
.
numberOfCells
(),
m_connectivity
.
maxNbNodePerCell
()),
m_Ar
(
"Ar"
,
m_mesh
.
numberOfNodes
()),
m_inv_Ar
(
"inv_Ar"
,
m_mesh
.
numberOfNodes
()),
m_Fjr
(
"Fjr"
,
m_mesh
.
numberOfCells
(),
m_connectivity
.
maxNbNodePerCell
()),
m_ur
(
"ur"
,
m_mesh
.
numberOfNodes
()),
m_rhocj
(
"rho_c"
,
m_mesh
.
numberOfCells
()),
m_Vj_over_cj
(
"Vj_over_cj"
,
m_mesh
.
numberOfCells
())
{
;
}
// Calcule une evaluation du pas de temps verifiant une CFL du type
// c*dt/dx<1. Utilise la reduction definie dans la structure // A MODIFIER
// ReduceMin. Ici, dx_j=V_j
KOKKOS_INLINE_FUNCTION
double
acoustic_dt
(
const
Kokkos
::
View
<
const
double
*>&
Vj
,
const
Kokkos
::
View
<
const
double
*>&
cj
)
const
{
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
){
m_Vj_over_cj
[
j
]
=
Vj
[
j
]
/
cj
[
j
];
});
double
dt
=
std
::
numeric_limits
<
double
>::
max
();
Kokkos
::
parallel_reduce
(
m_mesh
.
numberOfCells
(),
ReduceMin
(
m_Vj_over_cj
),
dt
);
return
dt
;
}
// Avance la valeur des inconnues pendant un pas de temps dt // A MODIFIER
void
computeNextStep
(
const
double
&
t
,
const
double
&
dt
,
UnknownsType
&
unknowns
)
{
Kokkos
::
View
<
double
*>
rhoj
=
unknowns
.
rhoj
();
Kokkos
::
View
<
Rd
*>
uj
=
unknowns
.
uj
();
Kokkos
::
View
<
double
*>
Ej
=
unknowns
.
Ej
();
Kokkos
::
View
<
double
*>
ej
=
unknowns
.
ej
();
Kokkos
::
View
<
double
*>
pj
=
unknowns
.
pj
();
Kokkos
::
View
<
double
*>
gammaj
=
unknowns
.
gammaj
();
Kokkos
::
View
<
double
*>
cj
=
unknowns
.
cj
();
const
Kokkos
::
View
<
const
Rd
*>
xj
=
m_mesh_data
.
xj
();
const
Kokkos
::
View
<
const
double
*>
Vj
=
m_mesh_data
.
Vj
();
const
Kokkos
::
View
<
const
Rd
**>
Cjr
=
m_mesh_data
.
Cjr
();
Kokkos
::
View
<
Rd
*>
xr
=
m_mesh
.
xr
();
// Calcule les flux
computeExplicitFluxes
(
xr
,
xj
,
rhoj
,
uj
,
pj
,
cj
,
Vj
,
Cjr
);
const
Kokkos
::
View
<
const
Rd
**>
Fjr
=
m_Fjr
;
const
Kokkos
::
View
<
const
Rd
*>
ur
=
m_ur
;
const
Kokkos
::
View
<
const
unsigned
short
*>
cell_nb_nodes
=
m_connectivity
.
cellNbNodes
();
const
Kokkos
::
View
<
const
unsigned
int
**>&
cell_nodes
=
m_connectivity
.
cellNodes
();
// Mise a jour de la vitesse et de l'energie totale specifique
const
Kokkos
::
View
<
const
double
*>
inv_mj
=
unknowns
.
invMj
();
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
)
{
Rd
momentum_fluxes
=
zero
;
double
energy_fluxes
=
0
;
for
(
int
R
=
0
;
R
<
cell_nb_nodes
[
j
];
++
R
)
{
const
int
r
=
cell_nodes
(
j
,
R
);
momentum_fluxes
+=
Fjr
(
j
,
R
);
energy_fluxes
+=
(
Fjr
(
j
,
R
),
ur
[
r
]);
}
uj
[
j
]
-=
(
dt
*
inv_mj
[
j
])
*
momentum_fluxes
;
Ej
[
j
]
-=
(
dt
*
inv_mj
[
j
])
*
energy_fluxes
;
});
// Calcul de e par la formule e = E-0.5 u^2
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
)
{
ej
[
j
]
=
Ej
[
j
]
-
0.5
*
(
uj
[
j
],
uj
[
j
]);
});
// deplace le maillage (ses sommets) en utilisant la vitesse
// donnee par le schema
Kokkos
::
parallel_for
(
m_mesh
.
numberOfNodes
(),
KOKKOS_LAMBDA
(
const
int
&
r
){
xr
[
r
]
+=
dt
*
ur
[
r
];
});
// met a jour les quantites (geometriques) associees au maillage
m_mesh_data
.
updateAllData
();
// Calcul de rho avec la formule Mj = Vj rhoj
const
Kokkos
::
View
<
const
double
*>
mj
=
unknowns
.
mj
();
Kokkos
::
parallel_for
(
m_mesh
.
numberOfCells
(),
KOKKOS_LAMBDA
(
const
int
&
j
){
rhoj
[
j
]
=
mj
[
j
]
/
Vj
[
j
];
});
}
};
#endif // FINITE_VOLUMES_DIFFUSION_HPP
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment