Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pugs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
code
pugs
Commits
669cd875
Commit
669cd875
authored
Jun 10, 2021
by
Stéphane Del Pino
Browse files
Options
Downloads
Patches
Plain Diff
Add polynomial 1d class
parent
6b3cfde3
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/analysis/Polynomial1D.hpp
+280
-0
280 additions, 0 deletions
src/analysis/Polynomial1D.hpp
tests/CMakeLists.txt
+1
-0
1 addition, 0 deletions
tests/CMakeLists.txt
tests/test_Polynomial1D.cpp
+259
-0
259 additions, 0 deletions
tests/test_Polynomial1D.cpp
with
540 additions
and
0 deletions
src/analysis/Polynomial1D.hpp
0 → 100644
+
280
−
0
View file @
669cd875
#ifndef POLYNOMIAL_1D_HPP
#define POLYNOMIAL_1D_HPP
#include
<utils/Array.hpp>
#include
<utils/Exceptions.hpp>
class
[[
nodiscard
]]
Polynomial1D
{
private:
Array
<
double
>
m_coefficients
;
PUGS_INLINE
size_t
_getRealDegree
()
const
{
size_t
real_degree
=
this
->
degree
();
while
(
real_degree
>
0
and
std
::
abs
(
m_coefficients
[
real_degree
])
<
1E-14
)
{
--
real_degree
;
}
return
real_degree
;
}
PUGS_INLINE
friend
Polynomial1D
_simplify
(
Polynomial1D
&&
p
)
{
size_t
real_degree
=
p
.
_getRealDegree
();
if
(
real_degree
!=
p
.
degree
())
{
Polynomial1D
q
(
real_degree
);
for
(
size_t
i
=
0
;
i
<=
real_degree
;
++
i
)
{
q
.
coefficient
(
i
)
=
p
.
coefficient
(
i
);
}
return
q
;
}
else
{
return
std
::
move
(
p
);
}
}
public
:
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Polynomial1D
&
p
)
{
bool
has_written
=
false
;
for
(
size_t
i
=
0
;
i
<
p
.
m_coefficients
.
size
();
++
i
)
{
const
double
&
coef
=
p
.
m_coefficients
[
i
];
if
(
coef
!=
0
)
{
if
(
coef
>
0
)
{
if
(
has_written
)
{
os
<<
" + "
;
}
os
<<
coef
;
}
else
{
if
(
has_written
)
{
os
<<
" - "
<<
-
coef
;
}
else
{
os
<<
coef
;
}
}
if
(
i
>
0
)
{
os
<<
"*x"
;
if
(
i
>
1
)
{
os
<<
'^'
<<
i
;
}
}
has_written
=
true
;
}
}
if
(
not
has_written
)
{
os
<<
0
;
}
return
os
;
}
PUGS_INLINE
Polynomial1D
operator
-
()
const
{
Polynomial1D
opposite
(
this
->
degree
());
for
(
size_t
i
=
0
;
i
<
m_coefficients
.
size
();
++
i
)
{
opposite
.
m_coefficients
[
i
]
=
-
m_coefficients
[
i
];
}
return
_simplify
(
std
::
move
(
opposite
));
}
PUGS_INLINE
friend
Polynomial1D
operator
*
(
const
double
a
,
const
Polynomial1D
&
p
)
{
Polynomial1D
product
(
p
.
degree
());
for
(
size_t
i
=
0
;
i
<
p
.
m_coefficients
.
size
();
++
i
)
{
product
.
m_coefficients
[
i
]
=
a
*
p
.
m_coefficients
[
i
];
}
return
_simplify
(
std
::
move
(
product
));
}
PUGS_INLINE
Polynomial1D
operator
*
(
const
Polynomial1D
&
p
)
const
{
Polynomial1D
product
(
this
->
degree
()
+
p
.
degree
());
product
.
m_coefficients
.
fill
(
0
);
for
(
size_t
i
=
0
;
i
<
this
->
m_coefficients
.
size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
p
.
m_coefficients
.
size
();
++
j
)
{
product
.
m_coefficients
[
i
+
j
]
+=
this
->
m_coefficients
[
i
]
*
p
.
m_coefficients
[
j
];
}
}
return
_simplify
(
std
::
move
(
product
));
}
PUGS_INLINE
Polynomial1D
operator
+
(
const
Polynomial1D
&
p
)
const
{
auto
sum_left_is_bigger
=
[](
const
Polynomial1D
&
greater
,
const
Polynomial1D
&
smaller
)
{
Polynomial1D
result
(
greater
.
degree
());
copy_to
(
greater
.
m_coefficients
,
result
.
m_coefficients
);
for
(
size_t
i
=
0
;
i
<
smaller
.
m_coefficients
.
size
();
++
i
)
{
result
.
m_coefficients
[
i
]
+=
smaller
.
m_coefficients
[
i
];
}
return
_simplify
(
std
::
move
(
result
));
};
if
(
m_coefficients
.
size
()
>=
p
.
m_coefficients
.
size
())
{
return
sum_left_is_bigger
(
*
this
,
p
);
}
else
{
return
sum_left_is_bigger
(
p
,
*
this
);
}
}
PUGS_INLINE
Polynomial1D
operator
-
(
const
Polynomial1D
&
p
)
const
{
if
(
m_coefficients
.
size
()
>=
p
.
m_coefficients
.
size
())
{
Polynomial1D
result
(
this
->
degree
());
for
(
size_t
i
=
0
;
i
<
p
.
m_coefficients
.
size
();
++
i
)
{
result
.
m_coefficients
[
i
]
=
m_coefficients
[
i
]
-
p
.
m_coefficients
[
i
];
}
for
(
size_t
i
=
p
.
m_coefficients
.
size
();
i
<
m_coefficients
.
size
();
++
i
)
{
result
.
m_coefficients
[
i
]
=
m_coefficients
[
i
];
}
return
_simplify
(
std
::
move
(
result
));
}
else
{
Polynomial1D
result
(
p
.
degree
());
for
(
size_t
i
=
0
;
i
<
m_coefficients
.
size
();
++
i
)
{
result
.
m_coefficients
[
i
]
=
m_coefficients
[
i
]
-
p
.
m_coefficients
[
i
];
}
for
(
size_t
i
=
m_coefficients
.
size
();
i
<
p
.
m_coefficients
.
size
();
++
i
)
{
result
.
m_coefficients
[
i
]
=
-
p
.
m_coefficients
[
i
];
}
return
_simplify
(
std
::
move
(
result
));
}
}
PUGS_INLINE
Polynomial1D
operator
%
(
const
Polynomial1D
&
q
)
const
{
const
Polynomial1D
&
p
=
*
this
;
Polynomial1D
ratio
(
this
->
degree
());
ratio
.
m_coefficients
.
fill
(
0
);
Polynomial1D
remaining
(
this
->
degree
());
copy_to
(
m_coefficients
,
remaining
.
m_coefficients
);
const
size_t
p_degree
=
p
.
degree
();
const
size_t
q_degree
=
q
.
_getRealDegree
();
for
(
ssize_t
i
=
p_degree
-
q_degree
;
i
>=
0
;
--
i
)
{
ratio
.
m_coefficients
[
i
]
=
remaining
.
m_coefficients
[
q_degree
+
i
]
/
q
.
m_coefficients
[
q_degree
];
for
(
ssize_t
j
=
q_degree
+
i
;
j
>=
i
;
--
j
)
{
remaining
.
m_coefficients
[
j
]
-=
ratio
.
m_coefficients
[
i
]
*
q
.
m_coefficients
[
j
-
i
];
}
}
for
(
size_t
j
=
q_degree
;
j
<=
remaining
.
degree
();
++
j
)
{
remaining
.
m_coefficients
[
j
]
=
0
;
}
return
_simplify
(
std
::
move
(
remaining
));
}
PUGS_INLINE
Polynomial1D
operator
/
(
const
Polynomial1D
&
q
)
const
{
const
Polynomial1D
&
p
=
*
this
;
Polynomial1D
ratio
(
this
->
degree
());
ratio
.
m_coefficients
.
fill
(
0
);
Polynomial1D
remaining
(
this
->
degree
());
copy_to
(
m_coefficients
,
remaining
.
m_coefficients
);
const
size_t
p_degree
=
p
.
degree
();
const
size_t
q_degree
=
q
.
_getRealDegree
();
for
(
ssize_t
i
=
p_degree
-
q_degree
;
i
>=
0
;
--
i
)
{
ratio
.
m_coefficients
[
i
]
=
remaining
.
m_coefficients
[
q_degree
+
i
]
/
q
.
m_coefficients
[
q_degree
];
for
(
ssize_t
j
=
q_degree
+
i
;
j
>=
i
;
--
j
)
{
remaining
.
m_coefficients
[
j
]
-=
ratio
.
m_coefficients
[
i
]
*
q
.
m_coefficients
[
j
-
i
];
}
}
return
_simplify
(
std
::
move
(
ratio
));
}
PUGS_INLINE
size_t
degree
()
const
{
Assert
(
m_coefficients
.
size
()
>
0
);
return
m_coefficients
.
size
()
-
1
;
}
PUGS_INLINE
double
&
coefficient
(
const
size_t
i
)
{
Assert
(
i
<
m_coefficients
.
size
());
return
m_coefficients
[
i
];
}
PUGS_INLINE
const
double
&
coefficient
(
const
size_t
i
)
const
{
Assert
(
i
<
m_coefficients
.
size
());
return
m_coefficients
[
i
];
}
PUGS_INLINE
friend
Polynomial1D
derive
(
const
Polynomial1D
&
p
)
{
if
(
p
.
degree
()
>
0
)
{
Polynomial1D
derivative
{
p
.
degree
()
-
1
};
for
(
size_t
i
=
0
;
i
<=
derivative
.
degree
();
++
i
)
{
derivative
.
m_coefficients
[
i
]
=
(
i
+
1
)
*
p
.
m_coefficients
[
i
+
1
];
}
return
derivative
;
}
else
{
return
Polynomial1D
(
std
::
vector
<
double
>
{
0
});
}
}
PUGS_INLINE
friend
Polynomial1D
primitive
(
const
Polynomial1D
&
p
)
{
if
(
p
.
degree
()
>
0
)
{
Polynomial1D
primitive
{
p
.
degree
()
+
1
};
primitive
.
m_coefficients
[
0
]
=
0
;
for
(
size_t
i
=
0
;
i
<=
p
.
degree
();
++
i
)
{
primitive
.
m_coefficients
[
i
+
1
]
=
p
.
m_coefficients
[
i
]
/
(
i
+
1
);
}
return
_simplify
(
std
::
move
(
primitive
));
}
else
{
return
Polynomial1D
(
std
::
vector
<
double
>
{
0
});
}
}
PUGS_INLINE
double
operator
()(
const
double
x
)
const
{
double
value
=
m_coefficients
[
this
->
degree
()];
for
(
ssize_t
i
=
this
->
degree
()
-
1
;
i
>=
0
;
--
i
)
{
value
*=
x
;
value
+=
m_coefficients
[
i
];
}
return
value
;
}
Polynomial1D
&
operator
=
(
Polynomial1D
&&
)
=
default
;
Polynomial1D
&
operator
=
(
const
Polynomial1D
&
)
=
default
;
PUGS_INLINE
explicit
Polynomial1D
(
const
std
::
vector
<
double
>&
coeffients
)
:
m_coefficients
(
coeffients
.
size
())
{
Assert
(
coeffients
.
size
()
>
0
,
"empty list is not allowed"
);
for
(
size_t
i
=
0
;
i
<
coeffients
.
size
();
++
i
)
{
m_coefficients
[
i
]
=
coeffients
[
i
];
}
}
PUGS_INLINE
explicit
Polynomial1D
(
const
size_t
degree
)
:
m_coefficients
(
degree
+
1
)
{
m_coefficients
.
fill
(
0
);
}
Polynomial1D
(
const
Polynomial1D
&
)
=
default
;
Polynomial1D
(
Polynomial1D
&&
)
=
default
;
~
Polynomial1D
()
=
default
;
};
#endif // POLYNOMIAL_1D_HPP
This diff is collapsed.
Click to expand it.
tests/CMakeLists.txt
+
1
−
0
View file @
669cd875
...
...
@@ -83,6 +83,7 @@ add_executable (unit_tests
test_NameProcessor.cpp
test_OStreamProcessor.cpp
test_ParseError.cpp
test_Polynomial1D.cpp
test_PugsAssert.cpp
test_PugsFunctionAdapter.cpp
test_PugsUtils.cpp
...
...
This diff is collapsed.
Click to expand it.
tests/test_Polynomial1D.cpp
0 → 100644
+
259
−
0
View file @
669cd875
#include
<catch2/catch_approx.hpp>
#include
<catch2/catch_test_macros.hpp>
#include
<analysis/Polynomial1D.hpp>
// clazy:excludeall=non-pod-global-static
TEST_CASE
(
"Polynomial1D"
,
"[analysis]"
)
{
SECTION
(
"Constructor"
)
{
Polynomial1D
p
({
-
1
,
0
,
0
,
1
});
REQUIRE
(
p
.
coefficient
(
0
)
==
-
1
);
REQUIRE
(
p
.
coefficient
(
1
)
==
0
);
REQUIRE
(
p
.
coefficient
(
2
)
==
0
);
REQUIRE
(
p
.
coefficient
(
3
)
==
1
);
REQUIRE
(
p
.
degree
()
==
3
);
}
SECTION
(
"value"
)
{
Polynomial1D
p
({
-
1
,
-
1.3
,
2.7
,
1
});
REQUIRE
(
p
.
degree
()
==
3
);
double
x
=
1.3
;
REQUIRE
(
p
(
x
)
==
Catch
::
Approx
(
-
1
-
1.3
*
x
+
2.7
*
x
*
x
+
x
*
x
*
x
));
x
=
0
;
REQUIRE
(
p
(
x
)
==
Catch
::
Approx
(
-
1
-
1.3
*
x
+
2.7
*
x
*
x
+
x
*
x
*
x
));
x
=
7
;
REQUIRE
(
p
(
x
)
==
Catch
::
Approx
(
-
1
-
1.3
*
x
+
2.7
*
x
*
x
+
x
*
x
*
x
));
x
=
-
3
;
REQUIRE
(
p
(
x
)
==
Catch
::
Approx
(
-
1
-
1.3
*
x
+
2.7
*
x
*
x
+
x
*
x
*
x
));
}
SECTION
(
"opposite"
)
{
Polynomial1D
p
({
-
1
,
-
1.3
,
2.7
,
1
});
Polynomial1D
r
=
-
p
;
REQUIRE
(
r
.
degree
()
==
3
);
REQUIRE
(
r
.
coefficient
(
0
)
==
1
);
REQUIRE
(
r
.
coefficient
(
1
)
==
1.3
);
REQUIRE
(
r
.
coefficient
(
2
)
==
-
2.7
);
REQUIRE
(
r
.
coefficient
(
3
)
==
-
1
);
}
SECTION
(
"sum"
)
{
Polynomial1D
p
({
-
1
,
0
,
0
,
1
});
Polynomial1D
q
({
-
1
,
2
,
1.4
,
2
,
-
1
});
Polynomial1D
r
=
p
+
q
;
REQUIRE
(
r
.
degree
()
==
4
);
REQUIRE
(
r
.
coefficient
(
0
)
==
-
2
);
REQUIRE
(
r
.
coefficient
(
1
)
==
2
);
REQUIRE
(
r
.
coefficient
(
2
)
==
1.4
);
REQUIRE
(
r
.
coefficient
(
3
)
==
3
);
REQUIRE
(
r
.
coefficient
(
4
)
==
-
1
);
}
SECTION
(
"difference"
)
{
Polynomial1D
p
({
-
1
,
0
,
0
,
1
});
Polynomial1D
q
({
-
1
,
2
,
1.4
,
2
,
-
1
});
{
Polynomial1D
r
=
p
-
q
;
REQUIRE
(
r
.
degree
()
==
4
);
REQUIRE
(
r
.
coefficient
(
0
)
==
0
);
REQUIRE
(
r
.
coefficient
(
1
)
==
-
2
);
REQUIRE
(
r
.
coefficient
(
2
)
==
-
1.4
);
REQUIRE
(
r
.
coefficient
(
3
)
==
-
1
);
REQUIRE
(
r
.
coefficient
(
4
)
==
1
);
}
{
Polynomial1D
s
=
q
-
p
;
REQUIRE
(
s
.
degree
()
==
4
);
REQUIRE
(
s
.
coefficient
(
0
)
==
0
);
REQUIRE
(
s
.
coefficient
(
1
)
==
2
);
REQUIRE
(
s
.
coefficient
(
2
)
==
1.4
);
REQUIRE
(
s
.
coefficient
(
3
)
==
1
);
REQUIRE
(
s
.
coefficient
(
4
)
==
-
1
);
}
{
Polynomial1D
s
=
q
-
q
;
REQUIRE
(
s
.
degree
()
==
0
);
REQUIRE
(
s
.
coefficient
(
0
)
==
0
);
}
}
SECTION
(
"product"
)
{
Polynomial1D
p
({
-
1
,
1
,
0
,
2
});
Polynomial1D
q
({
-
1
,
2
,
1.4
,
2
,
-
1
});
{
Polynomial1D
s
=
2
*
p
;
REQUIRE
(
s
.
degree
()
==
3
);
REQUIRE
(
s
.
coefficient
(
0
)
==
-
2
);
REQUIRE
(
s
.
coefficient
(
1
)
==
2
);
REQUIRE
(
s
.
coefficient
(
2
)
==
0
);
REQUIRE
(
s
.
coefficient
(
3
)
==
4
);
}
{
Polynomial1D
r
=
p
*
q
;
REQUIRE
(
r
.
degree
()
==
7
);
REQUIRE
(
r
.
coefficient
(
0
)
==
Catch
::
Approx
(
1
));
REQUIRE
(
r
.
coefficient
(
1
)
==
Catch
::
Approx
(
-
3
));
REQUIRE
(
r
.
coefficient
(
2
)
==
Catch
::
Approx
(
0.6
));
REQUIRE
(
r
.
coefficient
(
3
)
==
Catch
::
Approx
(
-
2.6
));
REQUIRE
(
r
.
coefficient
(
4
)
==
Catch
::
Approx
(
7
));
REQUIRE
(
r
.
coefficient
(
5
)
==
Catch
::
Approx
(
1.8
));
REQUIRE
(
r
.
coefficient
(
6
)
==
Catch
::
Approx
(
4
));
REQUIRE
(
r
.
coefficient
(
7
)
==
Catch
::
Approx
(
-
2
));
}
}
SECTION
(
"divide"
)
{
SECTION
(
"exact"
)
{
Polynomial1D
p
({
-
1
,
1
,
0
,
2
});
Polynomial1D
q
({
1
,
-
3
,
0.6
,
-
2.6
,
7
,
1.8
,
4
,
-
2
});
{
Polynomial1D
s
=
q
/
p
;
REQUIRE
(
s
.
degree
()
==
4
);
REQUIRE
(
s
.
coefficient
(
0
)
==
-
1
);
REQUIRE
(
s
.
coefficient
(
1
)
==
2
);
REQUIRE
(
s
.
coefficient
(
2
)
==
1.4
);
REQUIRE
(
s
.
coefficient
(
3
)
==
2
);
REQUIRE
(
s
.
coefficient
(
4
)
==
-
1
);
}
}
SECTION
(
"with remainder"
)
{
Polynomial1D
p
({
-
1
,
0
,
1
});
Polynomial1D
q
({
0
,
1
});
{
Polynomial1D
s
=
p
/
q
;
REQUIRE
(
s
.
degree
()
==
1
);
REQUIRE
(
s
.
coefficient
(
0
)
==
0
);
REQUIRE
(
s
.
coefficient
(
1
)
==
1
);
}
}
}
SECTION
(
"mod"
)
{
SECTION
(
"exact"
)
{
Polynomial1D
p
({
-
1
,
1
,
0
,
2
});
Polynomial1D
q
({
1
,
-
3
,
0.6
,
-
2.6
,
7
,
1.8
,
4
,
-
2
});
{
Polynomial1D
s
=
q
%
p
;
REQUIRE
(
s
.
degree
()
==
0
);
REQUIRE
(
s
.
coefficient
(
0
)
==
0
);
}
}
SECTION
(
"with remainder"
)
{
Polynomial1D
p
({
-
1
,
0
,
1
});
Polynomial1D
q
({
0
,
1
});
{
Polynomial1D
s
=
p
%
q
;
REQUIRE
(
s
.
degree
()
==
0
);
REQUIRE
(
s
.
coefficient
(
0
)
==
-
1
);
}
}
}
SECTION
(
"derive"
)
{
SECTION
(
"constant"
)
{
Polynomial1D
p
(
std
::
vector
<
double
>
{
-
1
});
Polynomial1D
p_prime
=
derive
(
p
);
REQUIRE
(
p_prime
.
degree
()
==
0
);
REQUIRE
(
p_prime
.
coefficient
(
0
)
==
0
);
}
SECTION
(
"non constant"
)
{
Polynomial1D
p
({
-
1
,
1
,
0
,
2
});
Polynomial1D
p_prime
=
derive
(
p
);
REQUIRE
(
p_prime
.
degree
()
==
2
);
REQUIRE
(
p_prime
.
coefficient
(
0
)
==
1
);
REQUIRE
(
p_prime
.
coefficient
(
1
)
==
0
);
REQUIRE
(
p_prime
.
coefficient
(
2
)
==
6
);
}
}
SECTION
(
"primitive"
)
{
SECTION
(
"zero"
)
{
Polynomial1D
p
(
std
::
vector
<
double
>
{
0
});
Polynomial1D
P
=
primitive
(
p
);
REQUIRE
(
P
.
degree
()
==
0
);
REQUIRE
(
P
.
coefficient
(
0
)
==
0
);
}
SECTION
(
"non zero"
)
{
Polynomial1D
p
({
-
1
,
1
,
0
,
2
});
Polynomial1D
P
=
primitive
(
p
);
REQUIRE
(
P
.
degree
()
==
4
);
REQUIRE
(
P
.
coefficient
(
0
)
==
0
);
REQUIRE
(
P
.
coefficient
(
1
)
==
-
1
);
REQUIRE
(
P
.
coefficient
(
2
)
==
0.5
);
REQUIRE
(
P
.
coefficient
(
3
)
==
0
);
REQUIRE
(
P
.
coefficient
(
4
)
==
0.5
);
}
}
SECTION
(
"Output"
)
{
Polynomial1D
p
({
-
1
,
0
,
0
,
1
});
std
::
ostringstream
os
;
os
<<
p
;
REQUIRE
(
os
.
str
()
==
"-1 + 1*x^3"
);
}
#ifndef NDEBUG
SECTION
(
"checking for bounds validation"
)
{}
#endif // NDEBUG
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment