Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pugs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
code
pugs
Commits
5eb27297
Commit
5eb27297
authored
11 months ago
by
clovis schoeck
Browse files
Options
Downloads
Patches
Plain Diff
Programme GKS à l'ordre 1 tourne et résout les équations d'Euler
parent
d77b1239
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/language/modules/SchemeModule.cpp
+3
-2
3 additions, 2 deletions
src/language/modules/SchemeModule.cpp
src/scheme/GKS.cpp
+120
-48
120 additions, 48 deletions
src/scheme/GKS.cpp
src/scheme/GKS.hpp
+6
-5
6 additions, 5 deletions
src/scheme/GKS.hpp
with
129 additions
and
55 deletions
src/language/modules/SchemeModule.cpp
+
3
−
2
View file @
5eb27297
...
...
@@ -426,11 +426,12 @@ SchemeModule::SchemeModule()
[](
const
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>&
rho
,
const
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>&
rho_U
,
const
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>&
rho_E
,
const
double
gamma
,
const
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>&
rho_E
,
const
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>&
tau
,
const
double
&
delta
,
const
double
&
dt
)
->
std
::
tuple
<
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>>
{
return
gks
(
rho
,
rho_U
,
rho_E
,
gamm
a
,
dt
);
return
gks
(
rho
,
rho_U
,
rho_E
,
tau
,
delt
a
,
dt
);
}
));
...
...
This diff is collapsed.
Click to expand it.
src/scheme/GKS.cpp
+
120
−
48
View file @
5eb27297
...
...
@@ -17,15 +17,24 @@ class GKS
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
rho_v
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
rho_U_v
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
rho_E_v
,
const
double
gamma
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
tau
,
const
double
delta
,
double
dt
)
{
using
Rd
=
TinyVector
<
MeshType
::
Dimension
>
;
const
MeshType
&
mesh
=
*
p_mesh
;
const
double
pi
=
acos
(
-
1
);
const
int
delta
=
(
3
-
gamma
)
/
(
gamma
-
1
);
const
double
pi
=
std
::
acos
(
-
1
);
DiscreteFunctionP0
<
const
double
>
tau_n
=
tau
->
get
<
DiscreteFunctionP0
<
const
double
>>
();
CellValue
<
double
>
eta
(
mesh
.
connectivity
());
for
(
CellId
cell_id
=
0
;
cell_id
<
mesh
.
numberOfCells
();
++
cell_id
)
{
if
(
tau_n
[
cell_id
]
==
0
)
eta
[
cell_id
]
=
0
;
else
eta
[
cell_id
]
=
(
tau_n
[
cell_id
]
/
dt
)
*
(
1
-
std
::
exp
(
-
dt
/
tau_n
[
cell_id
]));
}
DiscreteFunctionP0
<
const
double
>
rho_n
=
rho_v
->
get
<
DiscreteFunctionP0
<
const
double
>>
();
DiscreteFunctionP0
<
const
Rd
>
rho_U_n
=
rho_U_v
->
get
<
DiscreteFunctionP0
<
const
Rd
>>
();
...
...
@@ -36,101 +45,163 @@ class GKS
DiscreteFunctionP0
<
double
>
rho_E
=
copy
(
rho_E_n
);
CellValue
<
double
>
lambda
{
p_mesh
->
connectivity
()};
// lambda.fill(0);
CellValue
<
Rd
>
U
{
p_mesh
->
connectivity
()};
// U.fill(0);
auto
&
mesh_data
=
MeshDataManager
::
instance
().
getMeshData
(
mesh
);
auto
Vj
=
mesh_data
.
Vj
();
auto
cell_to_node_matrix
=
mesh
.
connectivity
().
cellToNodeMatrix
();
// const NodeId first_node_id = NodeId{0};
// const NodeId last_node_id = NodeId{static_cast<typename CellId::base_type>(mesh.numberOfNodes() - 1)};
NodeValue
<
double
>
rho_flux
(
mesh
.
connectivity
());
NodeValue
<
Rd
>
rho_U_flux
(
mesh
.
connectivity
());
NodeValue
<
double
>
rho_E_flux
(
mesh
.
connectivity
());
NodeValue
<
double
>
rho_flux_Euler
(
mesh
.
connectivity
());
NodeValue
<
Rd
>
rho_U_flux_Euler
(
mesh
.
connectivity
());
NodeValue
<
double
>
rho_E_flux_Euler
(
mesh
.
connectivity
());
rho_flux_Euler
.
fill
(
0
);
rho_U_flux_Euler
.
fill
(
TinyVector
<
1
>
(
0
));
rho_E_flux_Euler
.
fill
(
0
);
NodeValue
<
double
>
rho_flux_Navier
(
mesh
.
connectivity
());
NodeValue
<
Rd
>
rho_U_flux_Navier
(
mesh
.
connectivity
());
NodeValue
<
double
>
rho_E_flux_Navier
(
mesh
.
connectivity
());
rho_flux_Navier
.
fill
(
0
);
rho_U_flux_Navier
.
fill
(
TinyVector
<
1
>
(
0
));
rho_E_flux_Navier
.
fill
(
0
);
NodeValue
<
double
>
rho_node
(
mesh
.
connectivity
());
NodeValue
<
Rd
>
rho_U_node
(
mesh
.
connectivity
());
NodeValue
<
double
>
rho_E_node
(
mesh
.
connectivity
());
rho_node
.
fill
(
0
);
rho_U_node
.
fill
(
TinyVector
<
1
>
(
0
));
rho_E_node
.
fill
(
0
);
for
(
CellId
cell_id
=
0
;
cell_id
<
mesh
.
numberOfCells
();
++
cell_id
)
{
U
[
cell_id
][
0
]
=
rho_U_n
[
cell_id
][
0
]
/
rho_n
[
cell_id
];
double
U_2
=
U
[
cell_id
][
0
]
*
U
[
cell_id
][
0
];
double
rho_U_2
=
rho_U_n
[
cell_id
][
0
]
*
U
[
cell_id
][
0
];
lambda
[
cell_id
]
=
(
1.
+
delta
)
*
(
rho_n
[
cell_id
])
/
(
4
*
rho_E_n
[
cell_id
]
-
2
*
rho_U_2
);
lambda
[
cell_id
]
=
0.5
*
(
1.
+
delta
)
*
rho_n
[
cell_id
]
/
(
2
*
rho_E_n
[
cell_id
]
-
rho_U_2
);
}
for
(
CellId
cell_id
=
0
;
cell_id
<
mesh
.
numberOfCells
();
++
cell_id
)
{
double
U_2
=
U
[
cell_id
][
0
]
*
U
[
cell_id
][
0
];
double
rho_cell_left
=
rho_n
[
cell_id
]
*
(
1
+
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]));
rho_cell_left
/=
2.
;
Rd
rho_U_cell_left
;
rho_U_cell_left
[
0
]
=
rho_U_n
[
cell_id
][
0
]
*
(
1.
+
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]))
+
rho_n
[
cell_id
]
*
std
::
exp
(
-
lambda
[
cell_id
]
*
U_2
)
/
std
::
sqrt
(
pi
*
lambda
[
cell_id
]);
rho_U_cell_left
[
0
]
/=
2.
;
double
rho_E_cell_left
=
rho_E_n
[
cell_id
]
*
(
1.
+
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]))
+
0.5
*
rho_U_n
[
cell_id
][
0
]
*
std
::
exp
(
-
lambda
[
cell_id
]
*
U_2
)
/
std
::
sqrt
(
pi
*
lambda
[
cell_id
]);
rho_E_cell_left
/=
2.
;
auto
node_list
=
cell_to_node_matrix
[
cell_id
];
rho_node
[
node_list
[
1
]]
=
rho_cell_left
;
rho_U_node
[
node_list
[
1
]]
=
rho_U_cell_left
;
rho_E_node
[
node_list
[
1
]]
=
rho_E_cell_left
;
rho_node
[
node_list
[
1
]]
=
0.5
*
rho_cell_left
;
rho_U_node
[
node_list
[
1
]]
[
0
]
=
0.5
*
rho_U_cell_left
[
0
]
;
rho_E_node
[
node_list
[
1
]]
=
0.5
*
rho_E_cell_left
;
}
for
(
CellId
cell_id
=
0
;
cell_id
<
mesh
.
numberOfCells
();
++
cell_id
)
{
for
(
CellId
cell_id
=
1
;
cell_id
<
mesh
.
numberOfCells
();
++
cell_id
)
{
double
U_2
=
U
[
cell_id
][
0
]
*
U
[
cell_id
][
0
];
double
rho_cell_right
=
rho_n
[
cell_id
]
*
(
1
-
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]));
rho_cell_right
/=
2.
;
double
rho_cell_right
=
rho_n
[
cell_id
]
*
(
1.
-
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]));
Rd
rho_U_cell_right
;
rho_U_cell_right
[
0
]
=
rho_U_n
[
cell_id
][
0
]
*
(
1.
-
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]))
-
rho_n
[
cell_id
]
*
std
::
exp
(
-
lambda
[
cell_id
]
*
U_2
)
/
std
::
sqrt
(
pi
*
lambda
[
cell_id
]);
rho_U_cell_right
[
0
]
/=
2.
;
double
rho_E_cell_right
=
rho_E_n
[
cell_id
]
*
(
1.
-
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]))
-
0.5
*
rho_U_n
[
cell_id
][
0
]
*
std
::
exp
(
-
lambda
[
cell_id
]
*
U_2
)
/
std
::
sqrt
(
pi
*
lambda
[
cell_id
]);
rho_E_cell_right
/=
2.
;
auto
node_list
=
cell_to_node_matrix
[
cell_id
];
rho_node
[
node_list
[
0
]]
+=
rho_cell_right
;
rho_U_node
[
node_list
[
0
]]
+=
rho_U_cell_right
;
rho_E_node
[
node_list
[
0
]]
+=
rho_E_cell_right
;
rho_node
[
node_list
[
0
]]
+=
0.5
*
rho_cell_right
;
rho_U_node
[
node_list
[
0
]][
0
]
+=
0.5
*
rho_U_cell_right
[
0
];
rho_E_node
[
node_list
[
0
]]
+=
0.5
*
rho_E_cell_right
;
}
for
(
CellId
cell_id
=
1
;
cell_id
<
mesh
.
numberOfCells
();
++
cell_id
)
{
auto
node_list
=
cell_to_node_matrix
[
cell_id
];
double
rho_U_2_node
=
rho_U_node
[
node_list
[
0
]][
0
]
*
rho_U_node
[
node_list
[
0
]][
0
]
/
rho_node
[
node_list
[
0
]];
rho_flux_Euler
[
node_list
[
0
]]
=
rho_U_node
[
node_list
[
0
]][
0
];
rho_U_flux_Euler
[
node_list
[
0
]][
0
]
=
delta
*
rho_U_2_node
/
(
1.
+
delta
)
+
2
*
rho_E_node
[
node_list
[
0
]]
/
(
1.
+
delta
);
rho_E_flux_Euler
[
node_list
[
0
]]
=
rho_U_node
[
node_list
[
0
]][
0
]
/
rho_node
[
node_list
[
0
]]
*
((
3.
+
delta
)
*
rho_E_node
[
node_list
[
0
]]
/
(
1.
+
delta
)
-
rho_U_2_node
/
(
1.
+
delta
));
}
//##
//%%%%%%%%%%%%%%%
//##
for
(
CellId
cell_id
=
0
;
cell_id
<
mesh
.
numberOfCells
();
++
cell_id
)
{
double
U_2
=
U
[
cell_id
][
0
]
*
U
[
cell_id
][
0
];
double
rho_U_2
=
rho_U_n
[
cell_id
][
0
]
*
U
[
cell_id
][
0
];
Rd
F2_fn_left
;
F2_fn_left
[
0
]
=
(
rho_U_2
+
0.5
*
rho_n
[
cell_id
]
/
lambda
[
cell_id
])
*
(
1.
+
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]))
+
rho_U_n
[
cell_id
][
0
]
*
std
::
exp
(
-
lambda
[
cell_id
]
*
U_2
)
/
std
::
sqrt
(
pi
*
lambda
[
cell_id
]);
double
F3_fn_left
=
0.5
*
rho_U_n
[
cell_id
][
0
]
*
(
U_2
+
0.5
*
(
delta
+
3
)
/
lambda
[
cell_id
])
*
(
1.
+
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]))
+
0.5
*
rho_n
[
cell_id
]
*
(
U_2
+
0.5
*
(
delta
+
2
)
/
lambda
[
cell_id
])
*
std
::
exp
(
-
lambda
[
cell_id
]
*
U_2
)
/
std
::
sqrt
(
pi
*
lambda
[
cell_id
]);
auto
node_list
=
cell_to_node_matrix
[
cell_id
];
rho_flux
[
node_list
[
1
]]
=
rho_U_node
[
node_list
[
1
]][
0
];
rho_U_flux
[
node_list
[
1
]][
0
]
=
delta
/
(
1.
+
delta
)
*
rho_U_node
[
node_list
[
1
]][
0
]
*
rho_U_node
[
node_list
[
1
]][
0
]
/
rho_node
[
node_list
[
1
]]
+
2.
/
(
1.
+
delta
)
*
rho_E_node
[
node_list
[
1
]];
rho_E_flux
[
node_list
[
1
]]
=
rho_U_node
[
node_list
[
1
]][
0
]
/
rho_node
[
node_list
[
1
]]
*
((
3.
+
delta
)
/
(
1.
+
delta
)
*
rho_E_node
[
node_list
[
1
]]
-
1.
/
(
1.
+
delta
)
*
rho_U_node
[
node_list
[
1
]][
0
]
*
rho_U_node
[
node_list
[
1
]][
0
]
/
rho_node
[
node_list
[
1
]]);
rho_U_flux_Navier
[
node_list
[
1
]][
0
]
+=
0.5
*
F2_fn_left
[
0
];
rho_E_flux_Navier
[
node_list
[
1
]]
+=
0.5
*
F3_fn_left
;
}
// Peut être un problème ici avec les bords mais je sais pas encore
// rho_flux[first_node_id] = rho_flux[last_node_id];
// rho_U_flux[first_node_id] = rho_U_flux[last_node_id];
// rho_E_flux[first_node_id] = rho_E_flux[last_node_id];
for
(
CellId
cell_id
=
1
;
cell_id
<
mesh
.
numberOfCells
();
++
cell_id
)
{
double
U_2
=
U
[
cell_id
][
0
]
*
U
[
cell_id
][
0
];
double
rho_U_2
=
rho_U_n
[
cell_id
][
0
]
*
U
[
cell_id
][
0
];
Rd
F2_fn_right
;
F2_fn_right
[
0
]
=
(
rho_U_2
+
0.5
*
rho_n
[
cell_id
]
/
lambda
[
cell_id
])
*
(
1.
-
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]))
-
rho_U_n
[
cell_id
][
0
]
*
std
::
exp
(
-
lambda
[
cell_id
]
*
U_2
)
/
std
::
sqrt
(
pi
*
lambda
[
cell_id
]);
double
F3_fn_right
=
0.5
*
rho_U_n
[
cell_id
][
0
]
*
(
U_2
+
0.5
*
(
delta
+
3
)
/
lambda
[
cell_id
])
*
(
1.
-
std
::
erf
(
std
::
sqrt
(
lambda
[
cell_id
])
*
U
[
cell_id
][
0
]))
-
0.5
*
rho_n
[
cell_id
]
*
(
U_2
+
0.5
*
(
delta
+
2
)
/
lambda
[
cell_id
])
*
std
::
exp
(
-
lambda
[
cell_id
]
*
U_2
)
/
std
::
sqrt
(
pi
*
lambda
[
cell_id
]);
// double F3_fn_right = U[cell_id][0] * (rho_E_n[cell_id] + 0.5 * rho_n[cell_id] / lambda[cell_id]) *
// (1. - std::erf(std::sqrt(lambda[cell_id]) * U[cell_id][0])) -
// 0.5 * (rho_E_n[cell_id] + 0.25 * rho_n[cell_id] / lambda[cell_id]) *
// std::exp(-lambda[cell_id] * U_2) / std::sqrt(pi * lambda[cell_id]);
for
(
CellId
cell_id
=
1
;
cell_id
<
mesh
.
numberOfCells
()
-
1
;
++
cell_id
)
{
auto
node_list
=
cell_to_node_matrix
[
cell_id
];
const
double
rho_flux_sum
=
(
rho_flux
[
node_list
[
1
]]
-
rho_flux
[
node_list
[
0
]]);
const
Rd
rho_U_flux_sum
=
(
rho_U_flux
[
node_list
[
1
]]
-
rho_U_flux
[
node_list
[
0
]]);
const
double
rho_E_flux_sum
=
(
rho_E_flux
[
node_list
[
1
]]
-
rho_E_flux
[
node_list
[
0
]]);
rho
[
cell_id
]
-=
dt
*
rho_flux_sum
/
Vj
[
cell_id
];
rho_U
[
cell_id
][
0
]
-=
dt
*
rho_U_flux_sum
[
0
]
/
Vj
[
cell_id
];
rho_E
[
cell_id
]
-=
dt
*
rho_E_flux_sum
/
Vj
[
cell_id
];
rho_U_flux_Navier
[
node_list
[
0
]][
0
]
+=
0.5
*
F2_fn_right
[
0
];
rho_E_flux_Navier
[
node_list
[
0
]]
+=
0.5
*
F3_fn_right
;
}
// std::cout << "lambda " << lambda << std::endl;
// std::cout << "rho flux " << rho_flux_Euler << std::endl;
// std::cout << "rhoU flux " << rho_U_flux_Euler << std::endl;
// std::cout << "rhoE flux " << rho_E_flux_Euler << std::endl;
// std::exit(0);
for
(
CellId
cell_id
=
1
;
cell_id
<
mesh
.
numberOfCells
()
-
1
;
++
cell_id
)
{
auto
node_list
=
cell_to_node_matrix
[
cell_id
];
const
double
rho_flux_Euler_sum
=
(
rho_flux_Euler
[
node_list
[
1
]]
-
rho_flux_Euler
[
node_list
[
0
]]);
const
Rd
rho_U_flux_Euler_sum
=
(
rho_U_flux_Euler
[
node_list
[
1
]]
-
rho_U_flux_Euler
[
node_list
[
0
]]);
const
double
rho_E_flux_Euler_sum
=
(
rho_E_flux_Euler
[
node_list
[
1
]]
-
rho_E_flux_Euler
[
node_list
[
0
]]);
const
Rd
rho_U_flux_Navier_sum
=
(
rho_U_flux_Navier
[
node_list
[
1
]]
-
rho_U_flux_Navier
[
node_list
[
0
]]);
const
double
rho_E_flux_Navier_sum
=
(
rho_E_flux_Navier
[
node_list
[
1
]]
-
rho_E_flux_Navier
[
node_list
[
0
]]);
rho
[
cell_id
]
-=
dt
/
Vj
[
cell_id
]
*
(
rho_flux_Euler_sum
);
rho_U
[
cell_id
][
0
]
-=
dt
/
Vj
[
cell_id
]
*
(
rho_U_flux_Euler_sum
[
0
]
+
eta
[
cell_id
]
*
(
rho_U_flux_Navier_sum
[
0
]
-
rho_U_flux_Euler_sum
[
0
]));
rho_E
[
cell_id
]
-=
dt
/
Vj
[
cell_id
]
*
(
rho_E_flux_Euler_sum
+
0
*
eta
[
cell_id
]
*
(
rho_E_flux_Navier_sum
-
rho_E_flux_Euler_sum
));
}
return
std
::
make_tuple
(
std
::
make_shared
<
DiscreteFunctionVariant
>
(
rho
),
std
::
make_shared
<
DiscreteFunctionVariant
>
(
rho_U
),
std
::
make_shared
<
DiscreteFunctionVariant
>
(
rho_E
));
...
...
@@ -145,7 +216,8 @@ std::tuple<std::shared_ptr<const DiscreteFunctionVariant>, // rho
gks
(
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
rho_v
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
rho_U_v
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
rho_E_v
,
const
double
gamma
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
tau
,
const
double
delta
,
const
double
dt
)
{
std
::
shared_ptr
mesh_v
=
getCommonMesh
({
rho_v
,
rho_U_v
,
rho_E_v
});
...
...
@@ -165,7 +237,7 @@ gks(std::shared_ptr<const DiscreteFunctionVariant> rho_v,
if
constexpr
(
is_polygonal_mesh_v
<
MeshType
>
)
{
if
constexpr
(
MeshType
::
Dimension
==
1
)
{
GKS
<
MeshType
>
gks
;
return
gks
.
solve
(
p_mesh
,
rho_v
,
rho_U_v
,
rho_E_v
,
gamm
a
,
dt
);
return
gks
.
solve
(
p_mesh
,
rho_v
,
rho_U_v
,
rho_E_v
,
tau
,
delt
a
,
dt
);
}
else
{
throw
NormalError
(
"dimension not treated"
);
...
...
This diff is collapsed.
Click to expand it.
src/scheme/GKS.hpp
+
6
−
5
View file @
5eb27297
...
...
@@ -6,12 +6,13 @@
#include
<tuple>
std
::
tuple
<
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
,
// rho
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
,
// U
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>>
// E
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
,
//
rho
U
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>>
//
rho
E
gks
(
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
rho
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
U
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
E
,
const
double
gamma
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
rhoU
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
rhoE
,
std
::
shared_ptr
<
const
DiscreteFunctionVariant
>
tau
,
const
double
delta
,
const
double
dt
);
#endif // GKS_HPP
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment