Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pugs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
code
pugs
Commits
530eda81
Commit
530eda81
authored
2 months ago
by
t. chantrait
Browse files
Options
Downloads
Plain Diff
Merge remote-tracking branch 'origin/feature/reconstruction' into feature/local-dt-fsi
parents
cc579907
3adb6a45
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/scheme/PolynomialReconstruction.cpp
+1
-1
1 addition, 1 deletion
src/scheme/PolynomialReconstruction.cpp
tests/test_PolynomialReconstruction_degree_2.cpp
+88
-127
88 additions, 127 deletions
tests/test_PolynomialReconstruction_degree_2.cpp
with
89 additions
and
128 deletions
src/scheme/PolynomialReconstruction.cpp
+
1
−
1
View file @
530eda81
...
...
@@ -1451,7 +1451,7 @@ PolynomialReconstruction::_build(
if
(
m_descriptor
.
degree
()
>
1
)
{
auto
&
mean_j_of_ejk
=
mean_j_of_ejk_pool
[
t
];
for
(
size_t
i
=
0
;
i
<
basis_dimension
-
1
;
++
i
)
{
auto
&
dpk_j_0
=
dpk_j
[
0
];
auto
&
dpk_j_0
=
dpk_j
[
component_begin
];
for
(
size_t
k
=
0
;
k
<
DataType
::
Dimension
;
++
k
)
{
dpk_j_0
[
k
]
-=
X
(
i
,
column_begin
+
k
)
*
mean_j_of_ejk
[
i
];
}
...
...
This diff is collapsed.
Click to expand it.
tests/test_PolynomialReconstruction_degree_2.cpp
+
88
−
127
View file @
530eda81
...
...
@@ -38,6 +38,17 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
{
using
R1
=
TinyVector
<
1
>
;
auto
p0
=
[](
const
R1
&
x
)
{
return
+
2.3
+
1.7
*
x
[
0
]
-
2.3
*
x
[
0
]
*
x
[
0
];
};
auto
p1
=
[](
const
R1
&
x
)
{
return
-
1.7
+
2.1
*
x
[
0
]
+
1.2
*
x
[
0
]
*
x
[
0
];
};
auto
p2
=
[](
const
R1
&
x
)
{
return
+
1.4
-
0.6
*
x
[
0
]
-
2.0
*
x
[
0
]
*
x
[
0
];
};
auto
p3
=
[](
const
R1
&
x
)
{
return
+
2.4
-
2.3
*
x
[
0
]
+
1.1
*
x
[
0
]
*
x
[
0
];
};
auto
p4
=
[](
const
R1
&
x
)
{
return
-
0.2
+
3.1
*
x
[
0
]
-
0.7
*
x
[
0
]
*
x
[
0
];
};
auto
p5
=
[](
const
R1
&
x
)
{
return
-
3.2
-
3.6
*
x
[
0
]
+
0.1
*
x
[
0
]
*
x
[
0
];
};
auto
p6
=
[](
const
R1
&
x
)
{
return
-
4.1
+
3.1
*
x
[
0
]
-
0.2
*
x
[
0
]
*
x
[
0
];
};
auto
p7
=
[](
const
R1
&
x
)
{
return
+
0.8
+
2.9
*
x
[
0
]
+
4.1
*
x
[
0
]
*
x
[
0
];
};
auto
p8
=
[](
const
R1
&
x
)
{
return
-
1.6
+
2.3
*
x
[
0
]
-
1.7
*
x
[
0
]
*
x
[
0
];
};
auto
p9
=
[](
const
R1
&
x
)
{
return
+
2.3
+
1.7
*
x
[
0
]
-
1.4
*
x
[
0
]
*
x
[
0
];
};
SECTION
(
"R data"
)
{
for
(
auto
named_mesh
:
MeshDataBaseForTests
::
get
().
all1DMeshes
())
{
...
...
@@ -46,7 +57,7 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
1
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R_exact
=
[](
const
R1
&
x
)
{
return
2.3
+
1.7
*
x
[
0
]
-
1.4
*
x
[
0
]
*
x
[
0
];
}
;
auto
R_exact
=
p0
;
DiscreteFunctionP0
fh
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R_exact
));
...
...
@@ -70,11 +81,7 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
1
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R3_exact
=
[](
const
R1
&
x
)
->
R3
{
return
R3
{
+
2.3
+
1.7
*
x
[
0
]
-
x
[
0
]
*
x
[
0
],
//
+
1.4
-
0.6
*
x
[
0
]
+
2
*
x
[
0
]
*
x
[
0
],
//
-
0.2
+
3.1
*
x
[
0
]
+
1.4
*
x
[
0
]
*
x
[
0
]};
};
auto
R3_exact
=
[
&
](
const
R1
&
x
)
->
R3
{
return
R3
{
p2
(
x
),
p4
(
x
),
p1
(
x
)};
};
DiscreteFunctionP0
uh
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R3_exact
));
...
...
@@ -98,18 +105,10 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
1
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R3x3_exact
=
[](
const
R1
&
x
)
->
R3x3
{
return
R3x3
{
+
2.3
+
1.7
*
x
[
0
]
-
2.3
*
x
[
0
]
*
x
[
0
],
//
-
1.7
+
2.1
*
x
[
0
]
+
1.2
*
x
[
0
]
*
x
[
0
],
//
+
1.4
-
0.6
*
x
[
0
]
-
2.0
*
x
[
0
]
*
x
[
0
],
//
//
+
2.4
-
2.3
*
x
[
0
]
+
1.1
*
x
[
0
]
*
x
[
0
],
//
-
0.2
+
3.1
*
x
[
0
]
-
0.7
*
x
[
0
]
*
x
[
0
],
//
-
3.2
-
3.6
*
x
[
0
]
+
0.1
*
x
[
0
]
*
x
[
0
],
//
//
-
4.1
+
3.1
*
x
[
0
]
-
0.2
*
x
[
0
]
*
x
[
0
],
//
+
0.8
+
2.9
*
x
[
0
]
+
4.1
*
x
[
0
]
*
x
[
0
],
//
-
1.6
+
2.3
*
x
[
0
]
-
1.7
*
x
[
0
]
*
x
[
0
]};
auto
R3x3_exact
=
[
&
](
const
R1
&
x
)
->
R3x3
{
return
R3x3
{
p1
(
x
),
p2
(
x
),
p3
(
x
),
//
p4
(
x
),
p5
(
x
),
p6
(
x
),
//
p7
(
x
),
p8
(
x
),
p9
(
x
)};
};
DiscreteFunctionP0
Ah
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R3x3_exact
));
...
...
@@ -131,10 +130,8 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
{
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
1
>>
();
auto
&
mesh
=
*
p_mesh
;
std
::
array
<
std
::
function
<
double
(
const
R1
&
)
>
,
3
>
vector_exact
=
{[](
const
R1
&
x
)
->
double
{
return
+
2.3
+
1.7
*
x
[
0
]
+
1.2
*
x
[
0
]
*
x
[
0
];
},
[](
const
R1
&
x
)
->
double
{
return
-
1.7
+
2.1
*
x
[
0
]
+
2.1
*
x
[
0
]
*
x
[
0
];
},
[](
const
R1
&
x
)
->
double
{
return
+
1.4
-
0.6
*
x
[
0
]
-
1.3
*
x
[
0
]
*
x
[
0
];
}};
std
::
array
<
std
::
function
<
double
(
const
R1
&
)
>
,
3
>
vector_exact
=
{
p1
,
p7
,
p9
};
DiscreteFunctionP0Vector
Vh
=
test_only
::
exact_projection
(
mesh
,
degree
,
vector_exact
);
...
...
@@ -157,13 +154,16 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
1
>>
();
auto
&
mesh
=
*
p_mesh
;
std
::
array
<
std
::
function
<
R3
(
const
R1
&
)
>
,
2
>
vector_exact
=
{[](
const
R1
&
x
)
->
R3
{
return
R3
{
+
2.3
+
1.7
*
x
[
0
]
+
0.8
*
x
[
0
]
*
x
[
0
],
//
-
1.7
+
2.1
*
x
[
0
]
-
0.7
*
x
[
0
]
*
x
[
0
],
//
+
1.4
-
0.6
*
x
[
0
]
+
1.9
*
x
[
0
]
*
x
[
0
]};
std
::
array
<
std
::
function
<
R3
(
const
R1
&
)
>
,
3
>
vector_exact
//
=
{[
&
](
const
R1
&
x
)
->
R3
{
return
R3
{
p1
(
x
),
p2
(
x
),
p3
(
x
)};
},
[](
const
R1
&
x
)
->
R3
{
return
R3
{
+
1.6
+
0.7
*
x
[
0
],
-
2.1
+
1.2
*
x
[
0
],
+
1.1
-
0.3
*
x
[
0
]};
}};
[
&
](
const
R1
&
x
)
->
R3
{
return
R3
{
p5
(
x
),
p7
(
x
),
p0
(
x
)};
},
[
&
](
const
R1
&
x
)
->
R3
{
return
R3
{
p9
(
x
),
p8
(
x
),
p4
(
x
)};
}};
DiscreteFunctionP0Vector
Vh
=
test_only
::
exact_projection
(
mesh
,
degree
,
vector_exact
);
...
...
@@ -188,34 +188,17 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
1
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R_exact
=
[](
const
R1
&
x
)
{
return
2.3
+
1.7
*
x
[
0
];
}
;
auto
R_exact
=
p0
;
auto
R3_exact
=
[](
const
R1
&
x
)
->
R3
{
return
R3
{
+
2.3
+
1.7
*
x
[
0
]
+
2.3
*
x
[
0
]
*
x
[
0
],
//
+
1.4
-
0.6
*
x
[
0
]
-
1.5
*
x
[
0
]
*
x
[
0
],
//
-
0.2
+
3.1
*
x
[
0
]
+
2.9
*
x
[
0
]
*
x
[
0
]};
};
auto
R3_exact
=
[
&
](
const
R1
&
x
)
->
R3
{
return
R3
{
p9
(
x
),
p4
(
x
),
p7
(
x
)};
};
auto
R3x3_exact
=
[](
const
R1
&
x
)
->
R3x3
{
return
R3x3
{
+
2.3
+
1.7
*
x
[
0
]
-
0.3
*
x
[
0
]
*
x
[
0
],
-
1.7
+
2.1
*
x
[
0
]
+
1.4
*
x
[
0
]
*
x
[
0
],
+
1.4
-
0.6
*
x
[
0
]
-
2.3
*
x
[
0
]
*
x
[
0
],
//
+
2.4
-
2.3
*
x
[
0
]
+
1.8
*
x
[
0
]
*
x
[
0
],
-
0.2
+
3.1
*
x
[
0
]
-
1.7
*
x
[
0
]
*
x
[
0
],
-
3.2
-
3.6
*
x
[
0
]
+
0.7
*
x
[
0
]
*
x
[
0
],
//
-
4.1
+
3.1
*
x
[
0
]
-
1.9
*
x
[
0
]
*
x
[
0
],
+
0.8
+
2.9
*
x
[
0
]
+
2.2
*
x
[
0
]
*
x
[
0
],
-
1.6
+
2.3
*
x
[
0
]
-
1.3
*
x
[
0
]
*
x
[
0
],
};
auto
R3x3_exact
=
[
&
](
const
R1
&
x
)
->
R3x3
{
return
R3x3
{
p2
(
x
),
p1
(
x
),
p0
(
x
),
//
p3
(
x
),
p2
(
x
),
p4
(
x
),
//
p6
(
x
),
p5
(
x
),
p9
(
x
)};
};
std
::
array
<
std
::
function
<
double
(
const
R1
&
)
>
,
3
>
vector_exact
=
{[](
const
R1
&
x
)
->
double
{
return
+
2.3
+
1.7
*
x
[
0
]
+
2.2
*
x
[
0
]
*
x
[
0
];
},
[](
const
R1
&
x
)
->
double
{
return
-
1.7
+
2.1
*
x
[
0
]
-
1.9
*
x
[
0
]
*
x
[
0
];
},
[](
const
R1
&
x
)
->
double
{
return
+
1.4
-
0.6
*
x
[
0
]
+
3.1
*
x
[
0
]
*
x
[
0
];
}};
std
::
array
<
std
::
function
<
double
(
const
R1
&
)
>
,
3
>
vector_exact
=
{
p1
,
p8
,
p7
};
DiscreteFunctionP0
fh
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R_exact
));
DiscreteFunctionP0
uh
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R3_exact
));
...
...
@@ -258,6 +241,19 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
SECTION
(
"2D"
)
{
using
R2
=
TinyVector
<
2
>
;
auto
p0
=
[](
const
R2
&
x
)
{
return
+
2.3
+
1.7
*
x
[
0
]
-
1.3
*
x
[
1
]
+
1.2
*
x
[
0
]
*
x
[
0
]
+
1.3
*
x
[
0
]
*
x
[
1
]
-
3.2
*
x
[
1
]
*
x
[
1
];
};
auto
p1
=
[](
const
R2
&
x
)
{
return
+
2.3
+
1.7
*
x
[
0
]
-
2.2
*
x
[
1
]
-
2.1
*
x
[
0
]
*
x
[
0
]
-
2.3
*
x
[
0
]
*
x
[
1
]
-
3.2
*
x
[
1
]
*
x
[
1
];
};
auto
p2
=
[](
const
R2
&
x
)
{
return
+
1.4
-
0.6
*
x
[
0
]
+
1.3
*
x
[
1
]
+
2.3
*
x
[
0
]
*
x
[
0
]
-
1.3
*
x
[
0
]
*
x
[
1
]
+
1.2
*
x
[
1
]
*
x
[
1
];
};
auto
p3
=
[](
const
R2
&
x
)
{
return
-
0.2
+
3.1
*
x
[
0
]
-
1.1
*
x
[
1
]
-
2.1
*
x
[
0
]
*
x
[
0
]
+
1.3
*
x
[
0
]
*
x
[
1
]
-
1.1
*
x
[
1
]
*
x
[
1
];
};
SECTION
(
"R data"
)
{
...
...
@@ -267,10 +263,7 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
2
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R_exact
=
[](
const
R2
&
x
)
{
return
2.3
+
1.7
*
x
[
0
]
-
1.3
*
x
[
1
]
//
+
1.2
*
x
[
0
]
*
x
[
0
]
+
1.3
*
x
[
0
]
*
x
[
1
]
-
3.2
*
x
[
1
]
*
x
[
1
];
};
auto
R_exact
=
p0
;
DiscreteFunctionP0
fh
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R_exact
));
...
...
@@ -294,14 +287,7 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
2
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R3_exact
=
[](
const
R2
&
x
)
->
R3
{
return
R3
{
+
2.3
+
1.7
*
x
[
0
]
-
2.2
*
x
[
1
]
//
-
2.1
*
x
[
0
]
*
x
[
0
]
-
2.3
*
x
[
0
]
*
x
[
1
]
-
3.2
*
x
[
1
]
*
x
[
1
],
//
+
1.4
-
0.6
*
x
[
0
]
+
1.3
*
x
[
1
]
//
+
2.3
*
x
[
0
]
*
x
[
0
]
-
1.3
*
x
[
0
]
*
x
[
1
]
+
1.2
*
x
[
1
]
*
x
[
1
],
//
-
0.2
+
3.1
*
x
[
0
]
-
1.1
*
x
[
1
]
//
-
2.1
*
x
[
0
]
*
x
[
0
]
+
1.3
*
x
[
0
]
*
x
[
1
]
-
1.1
*
x
[
1
]
*
x
[
1
]};
};
auto
R3_exact
=
[
&
](
const
R2
&
x
)
->
R3
{
return
R3
{
p1
(
x
),
p2
(
x
),
p3
(
x
)};
};
DiscreteFunctionP0
uh
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R3_exact
));
...
...
@@ -325,15 +311,9 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
2
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R2x2_exact
=
[](
const
R2
&
x
)
->
R2x2
{
return
R2x2
{
+
2.3
+
1.7
*
x
[
0
]
+
1.2
*
x
[
1
]
//
-
2.1
*
x
[
0
]
*
x
[
0
]
+
1.3
*
x
[
0
]
*
x
[
1
]
+
1.2
*
x
[
1
]
*
x
[
1
],
//
-
1.7
+
2.1
*
x
[
0
]
-
2.2
*
x
[
1
]
//
-
1.2
*
x
[
0
]
*
x
[
0
]
+
2.1
*
x
[
0
]
*
x
[
1
]
-
1.3
*
x
[
1
]
*
x
[
1
],
//
+
1.4
-
0.6
*
x
[
0
]
-
2.1
*
x
[
1
]
//
-
1.1
*
x
[
0
]
*
x
[
0
]
-
2.3
*
x
[
0
]
*
x
[
1
]
+
2.1
*
x
[
1
]
*
x
[
1
],
+
2.4
-
2.3
*
x
[
0
]
+
1.3
*
x
[
1
]
//
+
2.7
*
x
[
0
]
*
x
[
0
]
+
2.1
*
x
[
0
]
*
x
[
1
]
-
2.7
*
x
[
1
]
*
x
[
1
]};
auto
R2x2_exact
=
[
&
](
const
R2
&
x
)
->
R2x2
{
return
R2x2
{
p0
(
x
),
p1
(
x
),
//
p2
(
x
),
p3
(
x
)};
};
DiscreteFunctionP0
Ah
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R2x2_exact
));
...
...
@@ -355,19 +335,7 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
2
>>
();
auto
&
mesh
=
*
p_mesh
;
std
::
array
<
std
::
function
<
double
(
const
R2
&
)
>
,
4
>
vector_exact
=
{[](
const
R2
&
x
)
->
double
{
return
+
2.3
+
1.7
*
x
[
0
]
+
1.2
*
x
[
1
]
+
1.2
*
x
[
0
]
*
x
[
0
]
-
2.1
*
x
[
0
]
*
x
[
1
]
+
3.1
*
x
[
1
]
*
x
[
1
];
},
[](
const
R2
&
x
)
->
double
{
return
-
1.7
+
2.1
*
x
[
0
]
-
2.2
*
x
[
1
]
-
0.7
*
x
[
0
]
*
x
[
0
]
+
2.2
*
x
[
0
]
*
x
[
1
]
-
1.6
*
x
[
1
]
*
x
[
1
];
},
[](
const
R2
&
x
)
->
double
{
return
+
1.4
-
0.6
*
x
[
0
]
-
2.1
*
x
[
1
]
+
2.3
*
x
[
0
]
*
x
[
0
]
+
2.3
*
x
[
0
]
*
x
[
1
]
-
2.9
*
x
[
1
]
*
x
[
1
];
},
[](
const
R2
&
x
)
->
double
{
return
+
2.4
-
2.3
*
x
[
0
]
+
1.3
*
x
[
1
]
-
2.7
*
x
[
0
]
*
x
[
0
]
-
1.2
*
x
[
0
]
*
x
[
1
]
-
0.7
*
x
[
1
]
*
x
[
1
];
}};
std
::
array
<
std
::
function
<
double
(
const
R2
&
)
>
,
4
>
vector_exact
=
{
p0
,
p1
,
p2
,
p3
};
DiscreteFunctionP0Vector
Vh
=
test_only
::
exact_projection
(
mesh
,
degree
,
vector_exact
);
...
...
@@ -385,6 +353,30 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
{
using
R3
=
TinyVector
<
3
>
;
auto
p0
=
[](
const
R3
&
x
)
{
return
2.3
+
1.7
*
x
[
0
]
-
1.3
*
x
[
1
]
+
2.1
*
x
[
2
]
//
+
1.7
*
x
[
0
]
*
x
[
0
]
+
1.4
*
x
[
1
]
*
x
[
1
]
+
1.7
*
x
[
2
]
*
x
[
2
]
//
-
2.3
*
x
[
0
]
*
x
[
1
]
+
1.6
*
x
[
0
]
*
x
[
2
]
-
1.9
*
x
[
1
]
*
x
[
2
];
};
auto
p1
=
[](
const
R3
&
x
)
{
return
+
2.3
+
1.7
*
x
[
0
]
-
2.2
*
x
[
1
]
+
1.8
*
x
[
2
]
//
+
1.7
*
x
[
0
]
*
x
[
0
]
-
2.4
*
x
[
1
]
*
x
[
1
]
-
2.3
*
x
[
2
]
*
x
[
2
]
//
-
2.1
*
x
[
0
]
*
x
[
1
]
+
2.6
*
x
[
0
]
*
x
[
2
]
+
1.6
*
x
[
1
]
*
x
[
2
];
};
auto
p2
=
[](
const
R3
&
x
)
{
return
+
1.4
-
0.6
*
x
[
0
]
+
1.3
*
x
[
1
]
-
3.7
*
x
[
2
]
//
+
3.1
*
x
[
0
]
*
x
[
0
]
-
1.1
*
x
[
1
]
*
x
[
1
]
+
1.7
*
x
[
2
]
*
x
[
2
]
//
-
2.3
*
x
[
0
]
*
x
[
1
]
-
2.6
*
x
[
0
]
*
x
[
2
]
-
1.9
*
x
[
1
]
*
x
[
2
];
};
auto
p3
=
[](
const
R3
&
x
)
{
return
-
0.2
+
3.1
*
x
[
0
]
-
1.1
*
x
[
1
]
+
1.9
*
x
[
2
]
//
-
1.5
*
x
[
0
]
*
x
[
0
]
+
1.4
*
x
[
1
]
*
x
[
1
]
-
1.2
*
x
[
2
]
*
x
[
2
]
//
-
1.7
*
x
[
0
]
*
x
[
1
]
-
1.3
*
x
[
0
]
*
x
[
2
]
+
2.1
*
x
[
1
]
*
x
[
2
];
};
SECTION
(
"R data"
)
{
for
(
auto
named_mesh
:
MeshDataBaseForTests
::
get
().
all3DMeshes
())
{
...
...
@@ -393,11 +385,7 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
3
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R_exact
=
[](
const
R3
&
x
)
{
return
2.3
+
1.7
*
x
[
0
]
-
1.3
*
x
[
1
]
+
2.1
*
x
[
2
]
//
+
1.7
*
x
[
0
]
*
x
[
0
]
+
1.4
*
x
[
1
]
*
x
[
1
]
+
1.7
*
x
[
2
]
*
x
[
2
]
//
-
2.3
*
x
[
0
]
*
x
[
1
]
+
1.6
*
x
[
0
]
*
x
[
2
]
-
1.9
*
x
[
1
]
*
x
[
2
];
};
auto
R_exact
=
p0
;
DiscreteFunctionP0
fh
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R_exact
));
...
...
@@ -419,17 +407,7 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
3
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R3_exact
=
[](
const
R3
&
x
)
->
R3
{
return
R3
{
+
2.3
+
1.7
*
x
[
0
]
-
2.2
*
x
[
1
]
+
1.8
*
x
[
2
]
//
+
1.7
*
x
[
0
]
*
x
[
0
]
-
2.4
*
x
[
1
]
*
x
[
1
]
-
2.3
*
x
[
2
]
*
x
[
2
]
//
-
2.1
*
x
[
0
]
*
x
[
1
]
+
2.6
*
x
[
0
]
*
x
[
2
]
+
1.6
*
x
[
1
]
*
x
[
2
],
//
+
1.4
-
0.6
*
x
[
0
]
+
1.3
*
x
[
1
]
-
3.7
*
x
[
2
]
//
+
3.1
*
x
[
0
]
*
x
[
0
]
-
1.1
*
x
[
1
]
*
x
[
1
]
+
1.7
*
x
[
2
]
*
x
[
2
]
//
-
2.3
*
x
[
0
]
*
x
[
1
]
-
2.6
*
x
[
0
]
*
x
[
2
]
-
1.9
*
x
[
1
]
*
x
[
2
],
//
-
0.2
+
3.1
*
x
[
0
]
-
1.1
*
x
[
1
]
+
1.9
*
x
[
2
]
//
-
1.5
*
x
[
0
]
*
x
[
0
]
+
1.4
*
x
[
1
]
*
x
[
1
]
-
1.2
*
x
[
2
]
*
x
[
2
]
//
-
1.7
*
x
[
0
]
*
x
[
1
]
-
1.3
*
x
[
0
]
*
x
[
2
]
+
2.1
*
x
[
1
]
*
x
[
2
]};
};
auto
R3_exact
=
[
&
](
const
R3
&
x
)
->
R3
{
return
R3
{
p1
(
x
),
p2
(
x
),
p3
(
x
)};
};
DiscreteFunctionP0
uh
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R3_exact
));
...
...
@@ -453,22 +431,9 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
3
>>
();
auto
&
mesh
=
*
p_mesh
;
auto
R2x2_exact
=
[](
const
R3
&
x
)
->
R2x2
{
return
R2x2
{
+
2.3
+
1.7
*
x
[
0
]
+
1.2
*
x
[
1
]
-
1.3
*
x
[
2
]
//
-
1.7
*
x
[
0
]
*
x
[
0
]
+
1.4
*
x
[
1
]
*
x
[
1
]
+
1.7
*
x
[
2
]
*
x
[
2
]
//
-
1.3
*
x
[
0
]
*
x
[
1
]
+
1.6
*
x
[
0
]
*
x
[
2
]
-
1.9
*
x
[
1
]
*
x
[
2
],
//
-
1.7
+
2.1
*
x
[
0
]
-
2.2
*
x
[
1
]
-
2.4
*
x
[
2
]
//
+
3.7
*
x
[
0
]
*
x
[
0
]
+
1.3
*
x
[
1
]
*
x
[
1
]
+
1.6
*
x
[
2
]
*
x
[
2
]
//
-
2.1
*
x
[
0
]
*
x
[
1
]
-
1.5
*
x
[
0
]
*
x
[
2
]
-
1.7
*
x
[
1
]
*
x
[
2
],
//
//
+
2.4
-
2.3
*
x
[
0
]
+
1.3
*
x
[
1
]
+
1.4
*
x
[
2
]
//
-
2.1
*
x
[
0
]
*
x
[
0
]
+
1.7
*
x
[
1
]
*
x
[
1
]
+
1.8
*
x
[
2
]
*
x
[
2
]
//
-
1.4
*
x
[
0
]
*
x
[
1
]
+
1.3
*
x
[
0
]
*
x
[
2
]
-
2.9
*
x
[
1
]
*
x
[
2
],
//
-
0.2
+
3.1
*
x
[
0
]
+
0.8
*
x
[
1
]
-
1.8
*
x
[
2
]
//
+
1.6
*
x
[
0
]
*
x
[
0
]
+
2.1
*
x
[
1
]
*
x
[
1
]
-
2.1
*
x
[
2
]
*
x
[
2
]
//
-
1.1
*
x
[
0
]
*
x
[
1
]
-
1.3
*
x
[
0
]
*
x
[
2
]
+
1.6
*
x
[
1
]
*
x
[
2
],
//
};
auto
R2x2_exact
=
[
&
](
const
R3
&
x
)
->
R2x2
{
return
R2x2
{
p0
(
x
),
p1
(
x
),
//
p2
(
x
),
p3
(
x
)};
};
DiscreteFunctionP0
Ah
=
test_only
::
exact_projection
(
mesh
,
degree
,
std
::
function
(
R2x2_exact
));
...
...
@@ -490,12 +455,8 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
{
auto
p_mesh
=
named_mesh
.
mesh
()
->
get
<
Mesh
<
3
>>
();
auto
&
mesh
=
*
p_mesh
;
#warning continue here
std
::
array
<
std
::
function
<
double
(
const
R3
&
)
>
,
4
>
vector_exact
=
{[](
const
R3
&
x
)
->
double
{
return
+
2.3
+
1.7
*
x
[
0
]
+
1.2
*
x
[
1
]
-
1.3
*
x
[
2
];
},
[](
const
R3
&
x
)
->
double
{
return
-
1.7
+
2.1
*
x
[
0
]
-
2.2
*
x
[
1
]
-
2.4
*
x
[
2
];
},
[](
const
R3
&
x
)
->
double
{
return
+
2.4
-
2.3
*
x
[
0
]
+
1.3
*
x
[
1
]
+
1.4
*
x
[
2
];
},
[](
const
R3
&
x
)
->
double
{
return
-
0.2
+
3.1
*
x
[
0
]
+
0.8
*
x
[
1
]
-
1.8
*
x
[
2
];
}};
std
::
array
<
std
::
function
<
double
(
const
R3
&
)
>
,
4
>
vector_exact
=
{
p0
,
p1
,
p2
,
p3
};
DiscreteFunctionP0Vector
Vh
=
test_only
::
exact_projection
(
mesh
,
degree
,
vector_exact
);
...
...
@@ -516,6 +477,7 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
SECTION
(
"with symmetries"
)
{
#warning continue here
// SECTION("1D")
// {
// std::vector<PolynomialReconstructionDescriptor> descriptor_list =
...
...
@@ -529,8 +491,7 @@ TEST_CASE("PolynomialReconstruction_degree_2", "[scheme]")
// using R1 = TinyVector<1>;
// for (auto descriptor : descriptor_list) {
// SECTION(name(descriptor.integrationMethodType()))
// {
// SECTION(name(descriptor.integrationMethodType()))// {
// SECTION("R^1 data")
// {
// auto p_mesh = MeshDataBaseForTests::get().unordered1DMesh()->get<Mesh<1>>();
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment