Skip to content
Snippets Groups Projects
Commit 47ecb6ff authored by Emmanuel Labourasse's avatar Emmanuel Labourasse
Browse files

implement a polynomial class with elementary opertaions

parent 24233ee8
Branches
No related tags found
No related merge requests found
......@@ -9,6 +9,7 @@ class Polynomial
private:
using Coefficients = TinyVector<N + 1, double>;
Coefficients m_coefficients;
static_assert((N >= 0), "Polynomial degree must be non-negative");
public:
PUGS_INLINE
......@@ -25,10 +26,12 @@ class Polynomial
return m_coefficients;
}
PUGS_INLINE
constexpr bool
operator==(const Polynomial<N>& q) const
template <size_t M>
PUGS_INLINE constexpr bool
operator==(const Polynomial<M>& q) const
{
if (M != N)
return false;
if (m_coefficients != q.coefficients()) {
return false;
}
......@@ -42,22 +45,55 @@ class Polynomial
return not this->operator==(q);
}
PUGS_INLINE
constexpr Polynomial<N>
operator+(const Polynomial<N>& q) const
template <size_t M>
PUGS_INLINE constexpr Polynomial<std::max(M, N)>
operator+(const Polynomial<M>& Q) const
{
TinyVector<N + 1> sum_coefs = m_coefficients + q.coefficients();
Polynomial<N> S(sum_coefs);
return S;
Polynomial<std::max(M, N)> P;
if constexpr (M > N) {
P.coefficients() = Q.coefficients();
for (size_t i = 0; i <= N; ++i) {
P.coefficients()[i] += coefficients()[i];
}
} else {
P.coefficients() = coefficients();
for (size_t i = 0; i <= M; ++i) {
P.coefficients()[i] += Q.coefficients()[i];
}
}
return P;
}
PUGS_INLINE
constexpr Polynomial<N>
operator-(const Polynomial<N>& q) const
template <size_t M>
PUGS_INLINE constexpr Polynomial<std::max(M, N)>
operator-(const Polynomial<M>& Q) const
{
Polynomial<std::max(M, N)> P;
if constexpr (M > N) {
P.coefficients() = -Q.coefficients();
for (size_t i = 0; i <= N; ++i) {
P.coefficients()[i] += coefficients()[i];
}
} else {
P.coefficients() = coefficients();
for (size_t i = 0; i <= M; ++i) {
P.coefficients()[i] -= Q.coefficients()[i];
}
}
return P;
}
template <size_t M>
PUGS_INLINE constexpr Polynomial<M + N> operator*(const Polynomial<M>& Q) const
{
TinyVector<N + 1> diff_coefs = m_coefficients - q.coefficients();
Polynomial<N> D(diff_coefs);
return D;
Polynomial<M + N> P;
P.coefficients() = zero;
for (size_t i = 0; i <= N; ++i) {
for (size_t j = 0; j <= M; ++j) {
P.coefficients()[i + j] += coefficients()[i] * Q.coefficients()[j];
}
}
return P;
}
PUGS_INLINE
......@@ -112,47 +148,89 @@ class Polynomial
return Polynomial<N + 1>{coefs};
}
PUGS_INLINE
constexpr friend double
integrate(const Polynomial<N>& P, const double& xinf, const double& xsup)
{
Polynomial<N + 1> Q = primitive(P);
return (Q(xsup) - Q(xinf));
}
PUGS_INLINE
constexpr friend auto
derivative(const Polynomial<N>& P)
{
if constexpr (N == 0) {
return Polynomial<0>(0);
} else {
TinyVector<N> coefs;
for (size_t i = 0; i < N; ++i) {
coefs[i] = double(i + 1) * P.coefficients()[i + 1];
}
return Polynomial<N - 1>(coefs);
}
}
PUGS_INLINE
constexpr friend std::ostream&
operator<<(std::ostream& os, const Polynomial<N>& P)
{
// os << "P(x) = ";
bool all_coef_zero = true;
for (size_t i = N; i > 1; --i) {
if (N == 0) {
os << P.coefficients()[0];
return os;
}
if (N != 1) {
if (P.coefficients()[N] != 0.) {
if (P.coefficients()[N] < 0.) {
os << "- ";
}
if (P.coefficients()[N] != 1 && P.coefficients()[N] != -1) {
os << std::abs(P.coefficients()[N]);
}
os << "x^" << N;
all_coef_zero = false;
}
}
for (size_t i = N - 1; i > 1; --i) {
if (P.coefficients()[i] != 0.) {
if (P.coefficients()[i] > 0.) {
os << " + ";
} else if (P.coefficients()[i] < 0.) {
os << " - ";
}
if (P.coefficients()[i] != 1 && P.coefficients()[i] != -1) {
os << std::abs(P.coefficients()[i]);
}
os << "x^" << i;
if (P.coefficients()[i - 1] > 0.)
os << " + ";
else
os << " - ";
all_coef_zero = false;
} else {
os << " ";
}
}
if (P.coefficients()[1] != 0.) {
if (P.coefficients()[1] > 0. && N != 1) {
os << " + ";
} else if (P.coefficients()[1] < 0.) {
os << " - ";
}
if (P.coefficients()[1] != 1 && P.coefficients()[1] != -1) {
os << std::abs(P.coefficients()[1]);
}
os << "x";
if (P.coefficients()[0] > 0.)
all_coef_zero = false;
}
if (P.coefficients()[0] != 0. || all_coef_zero) {
if (P.coefficients()[0] > 0.) {
os << " + ";
else if (P.coefficients()[0] < 0.)
} else if (P.coefficients()[0] < 0.) {
os << " - ";
all_coef_zero = false;
} else {
os << " ";
}
if (P.coefficients()[0] != 0. || all_coef_zero)
os << std::abs(P.coefficients()[0]);
}
return os;
}
PUGS_INLINE
constexpr Polynomial(const TinyVector<N + 1>& coefficients) noexcept : m_coefficients{coefficients} {}
PUGS_INLINE constexpr Polynomial(const TinyVector<N + 1>& coefficients) noexcept : m_coefficients{coefficients} {}
PUGS_INLINE
constexpr Polynomial(TinyVector<N + 1>&& coefficients) noexcept : m_coefficients{coefficients} {}
......
......@@ -9,10 +9,12 @@
#include <analysis/Polynomial.hpp>
// Instantiate to ensure full coverage is performed
template class Polynomial<0>;
template class Polynomial<1>;
template class Polynomial<2>;
template class Polynomial<3>;
template class Polynomial<4>;
template class Polynomial<5>;
// clazy:excludeall=non-pod-global-static
......@@ -26,15 +28,20 @@ TEST_CASE("Polynomial", "[analysis]")
{
Polynomial<2> P({2, 3, 4});
Polynomial<2> Q({2, 3, 4});
Polynomial<2> S({2, 3, 5});
REQUIRE(P == Q);
REQUIRE(P != S);
}
SECTION("addition")
{
Polynomial<2> P({2, 3, 4});
Polynomial<2> Q({-1, -3, 2});
Polynomial<2> S({1, 0, 6});
Polynomial<3> T({0, 3, 1, -2});
Polynomial<3> U({2, 6, 5, -2});
REQUIRE(S == (P + Q));
REQUIRE((T + P) == U);
}
SECTION("difference")
{
......@@ -42,6 +49,9 @@ TEST_CASE("Polynomial", "[analysis]")
Polynomial<2> Q({3, 4, 5});
Polynomial<2> D({-1, -1, -1});
REQUIRE(D == (P - Q));
Polynomial<3> R({2, 3, 4, 1});
REQUIRE(D == (P - Q));
REQUIRE((P - R) == Polynomial<3>({0, 0, 0, -1}));
}
SECTION("product_by_scalar")
{
......@@ -50,6 +60,12 @@ TEST_CASE("Polynomial", "[analysis]")
REQUIRE(M == (P * 3));
REQUIRE(M == (3 * P));
}
SECTION("product")
{
Polynomial<2> P({2, 3, 4});
Polynomial<3> Q({1, 2, -1, 1});
REQUIRE(Polynomial<5>({2, 7, 8, 7, -1, 4}) == (P * Q));
}
SECTION("evaluation")
{
Polynomial<2> P({2, -3, 4});
......@@ -67,4 +83,23 @@ TEST_CASE("Polynomial", "[analysis]")
Polynomial<3> R({0, 2, -3. / 2, 4. / 3});
REQUIRE(Q == R);
}
SECTION("integrate")
{
Polynomial<2> P({2, -3, 3});
double xinf = -1;
double xsup = 1;
double result = integrate(P, xinf, xsup);
REQUIRE(result == 6);
}
SECTION("derivative")
{
Polynomial<2> P({2, -3, 3});
Polynomial<1> Q = derivative(P);
REQUIRE(Q == Polynomial<1>({-3, 6}));
Polynomial<0> P2(3);
Polynomial<0> R(0);
REQUIRE(derivative(P2) == R);
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment