Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pugs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
code
pugs
Commits
2bbdd33e
Commit
2bbdd33e
authored
Aug 7, 2020
by
PATELA Julie
Browse files
Options
Downloads
Patches
Plain Diff
Fix Neumann boundary conditions in 2d
parent
33ecbe61
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/language/algorithms/HeatDiamondAlgorithm.cpp
+46
-123
46 additions, 123 deletions
src/language/algorithms/HeatDiamondAlgorithm.cpp
with
46 additions
and
123 deletions
src/language/algorithms/HeatDiamondAlgorithm.cpp
+
46
−
123
View file @
2bbdd33e
...
...
@@ -354,27 +354,6 @@ HeatDiamondScheme<Dimension>::HeatDiamondScheme(
w_rl
(
i_node
,
i_face
)
=
x
[
cpt_face
++
];
}
}
std
::
cout
<<
i_node
<<
":"
;
double
s
=
0
;
for
(
size_t
i
=
0
;
i
<
x
.
size
();
++
i
)
{
std
::
cout
<<
' '
<<
x
[
i
];
s
+=
x
[
i
];
}
std
::
cout
<<
" -> "
<<
s
<<
'\n'
;
}
}
for
(
NodeId
i_node
=
0
;
i_node
<
mesh
->
numberOfNodes
();
++
i_node
)
{
if
(
not
is_dirichlet
[
i_node
])
{
std
::
cout
<<
"node = "
<<
i_node
<<
'\n'
;
for
(
size_t
i_cell
=
0
;
i_cell
<
node_to_cell_matrix
[
i_node
].
size
();
++
i_cell
)
{
std
::
cout
<<
"w_rj("
<<
i_node
<<
','
<<
i_cell
<<
") = "
<<
w_rj
(
i_node
,
i_cell
)
<<
'\n'
;
}
if
(
primal_node_is_on_boundary
[
i_node
])
{
for
(
size_t
i_face
=
0
;
i_face
<
node_to_face_matrix
[
i_node
].
size
();
++
i_face
)
{
std
::
cout
<<
"w_rl("
<<
i_node
<<
','
<<
i_face
<<
") = "
<<
w_rl
(
i_node
,
i_face
)
<<
'\n'
;
}
}
}
}
...
...
@@ -462,8 +441,9 @@ HeatDiamondScheme<Dimension>::HeatDiamondScheme(
SparseMatrixDescriptor
S
{
number_of_dof
};
for
(
FaceId
face_id
=
0
;
face_id
<
mesh
->
numberOfFaces
();
++
face_id
)
{
if
(
not
primal_face_is_neumann
[
face_id
])
{
const
auto
&
primal_face_to_cell
=
face_to_cell_matrix
[
face_id
];
const
double
beta_l
=
0.5
*
alpha_l
[
face_id
]
*
mes_l
[
face_id
];
const
double
beta_l
=
1.
/
Dimension
*
alpha_l
[
face_id
]
*
mes_l
[
face_id
];
for
(
size_t
i_cell
=
0
;
i_cell
<
primal_face_to_cell
.
size
();
++
i_cell
)
{
const
CellId
cell_id1
=
primal_face_to_cell
[
i_cell
];
...
...
@@ -477,6 +457,7 @@ HeatDiamondScheme<Dimension>::HeatDiamondScheme(
}
}
}
}
FaceValue
<
const
CellId
>
face_dual_cell_id
=
[
=
]()
{
FaceValue
<
CellId
>
computed_face_dual_cell_id
{
mesh
->
connectivity
()};
...
...
@@ -545,97 +526,25 @@ HeatDiamondScheme<Dimension>::HeatDiamondScheme(
const
double
a_ir
=
alpha_face_id
*
(
nil
,
Clr
);
double
sum_w
=
0
;
for
(
size_t
j_cell
=
0
;
j_cell
<
primal_node_to_cell_matrix
[
node_id
].
size
();
++
j_cell
)
{
CellId
j_id
=
primal_node_to_cell_matrix
[
node_id
][
j_cell
];
S
(
cell_dof_number
[
i_id
],
cell_dof_number
[
j_id
])
-=
w_rj
(
node_id
,
j_cell
)
*
a_ir
;
sum_w
+=
w_rj
(
node_id
,
j_cell
);
}
std
::
cout
<<
node_id
<<
" "
;
if
(
primal_node_is_on_boundary
[
node_id
])
{
std
::
cout
<<
"face: "
<<
sum_w
<<
" -> "
;
for
(
size_t
l_face
=
0
;
l_face
<
node_to_face_matrix
[
node_id
].
size
();
++
l_face
)
{
FaceId
l_id
=
node_to_face_matrix
[
node_id
][
l_face
];
if
(
primal_face_is_neumann
[
l_id
])
{
S
(
cell_dof_number
[
i_id
],
face_dof_number
[
l_id
])
-=
w_rl
(
node_id
,
l_face
)
*
a_ir
;
sum_w
+=
w_rl
(
node_id
,
l_face
);
std
::
cout
<<
"[added value :"
<<
w_rl
(
node_id
,
l_face
)
*
a_ir
<<
"] Clr="
<<
Clr
<<
" nil="
<<
nil
<<
" "
;
}
}
}
else
{
std
::
cout
<<
"inner: "
;
}
std
::
cout
<<
"sum_w="
<<
sum_w
<<
'\n'
;
}
}
}
}
}
}
}
// // test
// const auto& cell_to_face_matrix = mesh->connectivity().cellToFaceMatrix();
// for (const auto& boundary_condition : boundary_condition_list) {
// std::visit(
// [&](auto&& bc) {
// using T = std::decay_t<decltype(bc)>;
// if constexpr ((std::is_same_v<T, NeumannBoundaryCondition>) or
// (std::is_same_v<T, FourierBoundaryCondition>)) {
// const auto& face_list = bc.faceList();
// // const auto& value_list = bc.valueList();
// for (CellId cell_id = 0; cell_id < mesh->numberOfCells(); ++cell_id) {
// for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
// FaceId face_id = face_list[i_face];
// for (size_t i_face2 = 0; i_face2 < cell_to_face_matrix[cell_id].size(); ++i_face2) {
// FaceId face_id2 = cell_to_face_matrix[cell_id][i_face2];
// if (not primal_face_is_on_boundary[face_id2]) {
// const double alpha_face_id = alpha_l[face_id2];
// const bool is_face_reversed_for_cell_i = primal_face_cell_is_reversed(cell_id, i_face2);
// for (size_t i_node = 0; i_node < primal_face_to_node_matrix[face_id2].size(); ++i_node) {
// NodeId node_id = primal_face_to_node_matrix[face_id2][i_node];
// const TinyVector<Dimension> nil = [&] {
// if (is_face_reversed_for_cell_i) {
// return -primal_nlr(face_id2, i_node);
// } else {
// return primal_nlr(face_id2, i_node);
// }
// }();
// if (not is_dirichlet[node_id]) {
// if (primal_node_is_on_boundary[node_id]) {
// CellId dual_cell_id = face_dual_cell_id[face_id2];
// for (size_t i_dual_node = 0; i_dual_node < dual_cell_to_node_matrix[dual_cell_id].size();
// ++i_dual_node) {
// const NodeId dual_node_id = dual_cell_to_node_matrix[dual_cell_id][i_dual_node];
// if (dual_node_primal_node_id[dual_node_id] == node_id) {
// const TinyVector<Dimension> Clr = dual_Cjr(dual_cell_id, i_dual_node);
// const double a_ir = alpha_face_id * (nil, Clr);
// for (size_t l_face = 0; l_face < node_to_face_matrix[node_id].size(); ++l_face) {
// FaceId face_to_node_id = node_to_face_matrix[node_id][l_face];
// if (face_to_node_id == face_id) {
// S(cell_dof_number[cell_id], face_dof_number[face_id]) -=
// w_rl(node_id, l_face) * a_ir;
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// },
// boundary_condition);
// }
// std::exit(0);
}
}
}
}
}
}
}
}
// Termes pour Neumann et Fourier
for
(
FaceId
face_id
=
0
;
face_id
<
mesh
->
numberOfFaces
();
++
face_id
)
{
if
(
primal_face_is_neumann
[
face_id
])
{
...
...
@@ -664,8 +573,6 @@ HeatDiamondScheme<Dimension>::HeatDiamondScheme(
for
(
size_t
l_face
=
0
;
l_face
<
node_to_face_matrix
[
node_id
].
size
();
++
l_face
)
{
FaceId
face_id2
=
node_to_face_matrix
[
node_id
][
l_face
];
if
(
primal_face_is_neumann
[
face_id2
])
{
std
::
cout
<<
"TEST***********************"
<<
"
\n
"
;
S
(
face_dof_number
[
face_id
],
face_dof_number
[
face_id2
])
-=
(
1.
/
nb_node_per_face
)
*
w_rl
(
node_id
,
l_face
);
}
...
...
@@ -797,28 +704,44 @@ HeatDiamondScheme<Dimension>::HeatDiamondScheme(
boundary_condition
);
}
std
::
cout
<<
S
<<
'\n'
;
for
(
FaceId
face_id
=
0
;
face_id
<
mesh
->
numberOfFaces
();
++
face_id
)
{
if
(
primal_face_is_neumann
[
face_id
])
{
CellId
cell_id
=
face_to_cell_matrix
[
face_id
][
0
];
const
bool
is_face_reversed_for_cell_i
=
primal_face_cell_is_reversed
(
cell_id
,
face_local_numbers_in_their_cells
(
face_id
,
0
));
for
(
size_t
i_node
=
0
;
i_node
<
primal_face_to_node_matrix
[
face_id
].
size
();
++
i_node
)
{
NodeId
node_id
=
primal_face_to_node_matrix
[
face_id
][
i_node
];
if
(
is_dirichlet
[
node_id
])
{
const
TinyVector
<
Dimension
>
nil
=
[
&
]
{
if
(
is_face_reversed_for_cell_i
)
{
return
-
primal_nlr
(
face_id
,
i_node
);
}
else
{
return
primal_nlr
(
face_id
,
i_node
);
}
}();
CellId
dual_cell_id
=
face_dual_cell_id
[
face_id
];
// for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) {
// if (primal_face_is_neumann[face_id]) {
// b[face_dof_number[face_id]] = 100;
// std::cout << "b[" << face_dof_number[face_id] << "] = " << b[face_dof_number[face_id]] << '\n';
// }
// }
for
(
size_t
i_dual_node
=
0
;
i_dual_node
<
dual_cell_to_node_matrix
[
dual_cell_id
].
size
();
++
i_dual_node
)
{
const
NodeId
dual_node_id
=
dual_cell_to_node_matrix
[
dual_cell_id
][
i_dual_node
];
if
(
dual_node_primal_node_id
[
dual_node_id
]
==
node_id
)
{
const
TinyVector
<
Dimension
>
Clr
=
dual_Cjr
(
dual_cell_id
,
i_dual_node
);
b
[
cell_dof_number
[
cell_id
]]
-=
alpha_l
[
face_id
]
*
(
nil
,
Clr
)
*
dirichlet_value
[
node_id
];
///
}
}
}
}
}
}
Vector
<
double
>
T
{
number_of_dof
};
T
=
1
;
T
[
6
]
=
2
;
T
[
7
]
=
3
;
T
[
8
]
=
4
;
Vector
AT
=
A
*
T
;
for
(
size_t
i
=
0
;
i
<
T
.
size
();
++
i
)
{
std
::
cout
<<
" AT["
<<
i
<<
"] = "
<<
AT
[
i
]
<<
'\t'
;
std
::
cout
<<
" b["
<<
i
<<
"] = "
<<
b
[
i
]
<<
'\n'
;
}
T
=
0
;
BiCGStab
{
b
,
A
,
T
,
1000
,
1e-15
};
Vector
r
=
A
*
T
-
b
;
std
::
cout
<<
"real residu = "
<<
std
::
sqrt
((
r
,
r
))
<<
'\n'
;
CellValue
<
double
>
Temperature
{
mesh
->
connectivity
()};
parallel_for
(
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment