Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pugs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
code
pugs
Commits
00eea8e2
Commit
00eea8e2
authored
3 years ago
by
Emmanuel Labourasse
Browse files
Options
Downloads
Patches
Plain Diff
Normal error fixed
parent
0e513322
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/analysis/PolynomialP.hpp
+115
-39
115 additions, 39 deletions
src/analysis/PolynomialP.hpp
tests/test_PolynomialP.cpp
+1
-1
1 addition, 1 deletion
tests/test_PolynomialP.cpp
with
116 additions
and
40 deletions
src/analysis/PolynomialP.hpp
+
115
−
39
View file @
00eea8e2
...
...
@@ -109,6 +109,7 @@ class PolynomialP
}
return
*
this
;
}
PUGS_INLINE
constexpr
PolynomialP
&
operator
+=
(
const
PolynomialP
&
Q
)
{
...
...
@@ -170,6 +171,65 @@ class PolynomialP
return
absolute_coefs
[
absolute_position
];
}
PUGS_INLINE
constexpr
double
operator
[](
const
TinyVector
<
Dimension
,
size_t
>
relative_pos
)
{
size_t
total_degree
=
0
;
for
(
size_t
i
=
0
;
i
<
Dimension
;
++
i
)
{
Assert
((
relative_pos
[
i
]
<=
N
),
"You are looking for a coefficient of order greater than the degree of the polynomial"
);
total_degree
+=
relative_pos
[
i
];
}
Assert
((
total_degree
<=
N
),
"The sum of the degrees of the coefficient you are looking for is greater than the "
"degree of the polynomial"
);
TinyVector
<
size_coef
>
absolute_coefs
=
this
->
coefficients
();
size_t
absolute_position
=
0
;
if
constexpr
(
Dimension
==
1
)
{
absolute_position
=
relative_pos
[
0
];
}
else
if
constexpr
(
Dimension
==
2
)
{
size_t
total_degree
=
relative_pos
[
0
]
+
relative_pos
[
1
];
absolute_position
=
total_degree
*
(
total_degree
+
1
)
/
2
+
relative_pos
[
1
];
}
else
{
throw
UnexpectedError
(
"Not yet Available in 3D"
);
// static_assert(Dimension == 3);
// size_t total_degree = relative_pos[0] + relative_pos[1] + relative_pos[2];
// return (total_degree + 1) * (total_degree + 2) * (total_degree + 3) / 6 + relative_pos[1];
// return (N + 1) * (N + 2) * (N + 3) / 6;
}
return
absolute_coefs
[
absolute_position
];
}
PUGS_INLINE
constexpr
double
absolute_position
(
const
TinyVector
<
Dimension
,
size_t
>
relative_pos
)
{
size_t
total_degree
=
0
;
for
(
size_t
i
=
0
;
i
<
Dimension
;
++
i
)
{
Assert
((
relative_pos
[
i
]
<=
N
),
"You are looking for a coefficient of order greater than the degree of the polynomial"
);
total_degree
+=
relative_pos
[
i
];
}
Assert
((
total_degree
<=
N
),
"The sum of the degrees of the coefficient you are looking for is greater than the "
"degree of the polynomial"
);
size_t
abs_pos
=
0
;
if
constexpr
(
Dimension
==
1
)
{
abs_pos
=
relative_pos
[
0
];
}
else
if
constexpr
(
Dimension
==
2
)
{
size_t
total_degree
=
relative_pos
[
0
]
+
relative_pos
[
1
];
abs_pos
=
total_degree
*
(
total_degree
+
1
)
/
2
+
relative_pos
[
1
];
}
else
{
throw
UnexpectedError
(
"Not yet Available in 3D"
);
// static_assert(Dimension == 3);
// size_t total_degree = relative_pos[0] + relative_pos[1] + relative_pos[2];
// return (total_degree + 1) * (total_degree + 2) * (total_degree + 3) / 6 + relative_pos[1];
// return (N + 1) * (N + 2) * (N + 3) / 6;
}
return
abs_pos
;
}
PUGS_INLINE
constexpr
double
operator
()(
const
TinyVector
<
Dimension
>
x
)
const
...
...
@@ -187,23 +247,15 @@ class PolynomialP
value
=
P
[
relative_pos
];
for
(
size_t
i
=
N
;
i
>
0
;
--
i
)
{
value
*=
x
[
1
];
relative_pos
=
TinyVector
<
2
,
size_t
>
(
N
-
i
+
1
,
i
-
1
);
relative_pos
=
TinyVector
<
Dimension
,
size_t
>
(
N
-
i
+
1
,
i
-
1
);
double
valuex
=
P
[
relative_pos
];
for
(
size_t
j
=
N
-
i
+
1
;
j
>
0
;
--
j
)
{
valuex
*=
x
[
0
];
relative_pos
=
TinyVector
<
2
,
size_t
>
(
j
-
1
,
i
-
1
);
relative_pos
=
TinyVector
<
Dimension
,
size_t
>
(
j
-
1
,
i
-
1
);
valuex
+=
P
[
relative_pos
];
}
value
+=
valuex
;
}
// relative_pos = TinyVector<2, size_t>(N, 0);
// double valuex = P[relative_pos];
// for (size_t j = N; j > 0; --j) {
// valuex *= x[0];
// relative_pos = TinyVector<2, size_t>(j - 1, 0);
// valuex += P[relative_pos];
// }
// value += valuex;
}
else
{
throw
UnexpectedError
(
"Not yet Available in 3D"
);
}
...
...
@@ -211,23 +263,62 @@ class PolynomialP
return
value
;
}
PUGS_INLINE
constexpr
PolynomialP
()
noexcept
=
default
;
~
PolynomialP
()
=
default
;
};
PUGS_INLINE
size_t
find_size_coef
(
const
size_t
degree
)
{
if
constexpr
(
Dimension
==
1
)
{
return
degree
+
1
;
}
else
if
constexpr
(
Dimension
==
2
)
{
return
(
degree
+
1
)
*
(
degree
+
2
)
/
2
;
}
else
{
static_assert
(
Dimension
==
3
);
return
(
degree
+
1
)
*
(
degree
+
2
)
*
(
degree
+
3
)
/
6
;
}
}
// // evaluation using Horner's method https://en.wikipedia.org/wiki/Horner's_method
// PUGS_INLINE
// constexpr double
// evaluate(const double& x) const
// PUGS_INLINE constexpr auto
// derivative(const PolynomialP& P, const size_t var)
// {
// TinyVector<N + 1> coefs = this->coefficients();
// double bcoef = coefs[N];
// for (size_t i = N; i > 0; --i) {
// bcoef *= x;
// bcoef += coefs[i - 1];
// TinyVector<size_coef> coefs(zero);
// PolynomialP<N, Dimension> Q(coefs);
// if constexpr (N == 0) {
// return Q;
// } else {
// Assert(var < Dimension,
// "You can not derive a polynomial with respect to a variable of rank greater than the dimension");
// if constexpr (Dimension == 1) {
// for (size_t i = 0; i < size_coef; ++i) {
// coefs[i] = double(i + 1) * P.coefficients()[i + 1];
// }
// return Q;
// } else if constexpr (Dimension == 2) {
// if (var == 0) {
// for (size_t i = 0; i < N; ++i) {
// for (size_t j = 0; j < N; ++i) {
// TinyVector<Dimension, size_t> relative_pos(i, j);
// TinyVector<Dimension, size_t> relative_posp(i + 1, j);
// Q[relative_pos] = double(i + 1) * P[relative_posp];
// }
// return bcoef;
// }
// } else {
// for (size_t i = 0; i < N; ++i) {
// for (size_t j = 0; j < N; ++i) {
// TinyVector<Dimension, size_t> relative_pos(i, j);
// TinyVector<Dimension, size_t> relative_posp(i, j + 1);
// Q[relative_pos] = double(j + 1) * P[relative_posp];
// }
// }
// }
// return Q;
// } else {
// throw UnexpectedError("Not yet Available in 3D");
// }
// }
// }
PUGS_INLINE
constexpr
PolynomialP
()
noexcept
=
default
;
~
PolynomialP
()
=
default
;
};
// template <size_t M>
// PUGS_INLINE constexpr friend void
...
...
@@ -378,21 +469,6 @@ class PolynomialP
// return integral;
// }
// template <size_t N>
// PUGS_INLINE constexpr auto
// derivative(const PolynomialP<N>& P)
// {
// if constexpr (N == 0) {
// return PolynomialP<0>(0);
// } else {
// TinyVector<N> coefs;
// for (size_t i = 0; i < N; ++i) {
// coefs[i] = double(i + 1) * P.coefficients()[i + 1];
// }
// return PolynomialP<N - 1>(coefs);
// }
// }
// template <size_t N>
// PUGS_INLINE constexpr PolynomialP<N>
// lagrangePolynomialP(const TinyVector<N + 1> zeros, const size_t k)
...
...
This diff is collapsed.
Click to expand it.
tests/test_PolynomialP.cpp
+
1
−
1
View file @
00eea8e2
...
...
@@ -116,7 +116,7 @@ TEST_CASE("PolynomialP", "[analysis]")
REQUIRE
(
Py
(
pos
)
==
11
);
REQUIRE
(
Px
(
pos2
)
==
10
);
REQUIRE
(
P
(
pos2
)
==
62
);
REQUIRE
(
Q
(
pos
)
==
-
2
0
);
REQUIRE
(
Q
(
pos
)
==
-
2
4
);
}
// // SECTION("product")
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment