Skip to content
Snippets Groups Projects
Select Git revision
  • fc8dffa84fd26cbc67cebb895a75204060327ae8
  • develop default protected
  • feature/advection
  • feature/composite-scheme-other-fluxes
  • origin/stage/bouguettaia
  • save_clemence
  • feature/local-dt-fsi
  • feature/variational-hydro
  • feature/gmsh-reader
  • feature/reconstruction
  • feature/kinetic-schemes
  • feature/composite-scheme-sources
  • feature/serraille
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

HyperelasticSolver.cpp

Blame
  • test_Polynomial.cpp 5.36 KiB
    #include <catch2/catch_test_macros.hpp>
    
    #include <Kokkos_Core.hpp>
    
    #include <utils/PugsAssert.hpp>
    #include <utils/Types.hpp>
    
    #include <algebra/TinyMatrix.hpp>
    #include <analysis/Polynomial.hpp>
    
    // Instantiate to ensure full coverage is performed
    template class Polynomial<0>;
    template class Polynomial<1>;
    template class Polynomial<2>;
    template class Polynomial<3>;
    template class Polynomial<4>;
    template class Polynomial<5>;
    
    // clazy:excludeall=non-pod-global-static
    
    TEST_CASE("Polynomial", "[analysis]")
    {
      SECTION("construction")
      {
        REQUIRE_NOTHROW(Polynomial<2>{TinyVector<3>{2, 3, 4}});
      }
      SECTION("degree")
      {
        Polynomial<2> P(TinyVector<3>{2, 3, 4});
        REQUIRE(P.degree() == 2);
      }
      SECTION("equality")
      {
        Polynomial<2> P(TinyVector<3>{2, 3, 4});
        Polynomial<2> Q(TinyVector<3>{2, 3, 4});
        Polynomial<2> S(TinyVector<3>{2, 3, 5});
    
        REQUIRE(P == Q);
        REQUIRE(P != S);
      }
      SECTION("addition")
      {
        Polynomial<2> P(TinyVector<3>{2, 3, 4});
        Polynomial<2> Q(TinyVector<3>{-1, -3, 2});
        Polynomial<2> S(TinyVector<3>{1, 0, 6});
        Polynomial<3> T(TinyVector<4>{0, 3, 1, -2});
        Polynomial<3> U(TinyVector<4>{2, 6, 5, -2});
        REQUIRE(S == (P + Q));
        REQUIRE((T + P) == U);
      }
      SECTION("opposed")
      {
        Polynomial<2> P(TinyVector<3>{2, 3, 4});
        Polynomial<2> Q = -P;
        REQUIRE(Q == Polynomial<2>(TinyVector<3>{-2, -3, -4}));
      }
      SECTION("difference")
      {
        Polynomial<2> P(TinyVector<3>{2, 3, 4});
        Polynomial<2> Q(TinyVector<3>{3, 4, 5});
        Polynomial<2> D(TinyVector<3>{-1, -1, -1});
        REQUIRE(D == (P - Q));
        Polynomial<3> R(TinyVector<4>{2, 3, 4, 1});
        REQUIRE(D == (P - Q));
        REQUIRE((P - R) == Polynomial<3>(TinyVector<4>{0, 0, 0, -1}));
        R -= P;
        REQUIRE(R == Polynomial<3>(TinyVector<4>{0, 0, 0, 1}));
      }
      SECTION("product_by_scalar")
      {
        Polynomial<2> P(TinyVector<3>{2, 3, 4});
        Polynomial<2> M(TinyVector<3>{6, 9, 12});
        REQUIRE(M == (P * 3));
        REQUIRE(M == (3 * P));
      }
      SECTION("product")
      {
        Polynomial<2> P(TinyVector<3>{2, 3, 4});
        Polynomial<3> Q(TinyVector<4>{1, 2, -1, 1});
        Polynomial<4> R;
        Polynomial<5> S;
        R = P;
        S = P;
        S *= Q;
        REQUIRE(Polynomial<5>(TinyVector<6>{2, 7, 8, 7, -1, 4}) == (P * Q));
        REQUIRE(Polynomial<5>(TinyVector<6>{2, 7, 8, 7, -1, 4}) == S);
        // REQUIRE_THROWS_AS(R *= Q, AssertError);
      }
      SECTION("divide")
      {
        Polynomial<2> P(TinyVector<3>{1, 0, 1});
        Polynomial<1> Q(TinyVector<2>{0, 1});
        Polynomial<1> Q1(TinyVector<2>{0, 1});
    
        Polynomial<2> R;
        Polynomial<2> S;
        REQUIRE(P.realDegree() == 2);
        REQUIRE(Q.realDegree() == 1);
        REQUIRE(Q1.realDegree() == 1);
    
        divide(P, Q1, R, S);
        REQUIRE(Polynomial<2>(TinyVector<3>{1, 0, 0}) == S);
        REQUIRE(Polynomial<2>(TinyVector<3>{0, 1, 0}) == R);
      }
      SECTION("evaluation")
      {
        Polynomial<2> P(TinyVector<3>{2, -3, 4});
        double result = P.evaluate(3);
        REQUIRE(result == 29);
        result = P(3);
        REQUIRE(result == 29);
      }
      SECTION("primitive")
      {
        Polynomial<2> P(TinyVector<3>{2, -3, 4});
        TinyVector<4> coefs = zero;
        Polynomial<3> Q(coefs);
        Q = primitive(P);
        Polynomial<3> R(TinyVector<4>{0, 2, -3. / 2, 4. / 3});
        REQUIRE(Q == R);
      }
      SECTION("integrate")
      {
        Polynomial<2> P(TinyVector<3>{2, -3, 3});
        double xinf   = -1;
        double xsup   = 1;
        double result = integrate(P, xinf, xsup);
        REQUIRE(result == 6);
        result = symmetricIntegrate(P, 2);
        REQUIRE(result == 24);
      }
      SECTION("derivative")
      {
        Polynomial<2> P(TinyVector<3>{2, -3, 3});
        Polynomial<1> Q = derivative(P);
        REQUIRE(Q == Polynomial<1>(TinyVector<2>{-3, 6}));
    
        Polynomial<0> P2(TinyVector<1>{3});
    
        Polynomial<0> R(TinyVector<1>{0});
        REQUIRE(derivative(P2) == R);
      }
    
      SECTION("affectation")
      {
        Polynomial<2> Q(TinyVector<3>{2, -3, 3});
        Polynomial<4> R(TinyVector<5>{2, -3, 3, 0, 0});
        Polynomial<4> P(TinyVector<5>{0, 1, 2, 3, 3});
        P = Q;
        REQUIRE(P == R);
      }
    
      SECTION("affectation addition")
      {
        Polynomial<2> Q(TinyVector<3>{2, -3, 3});
        Polynomial<4> R(TinyVector<5>{2, -2, 5, 3, 3});
        Polynomial<4> P(TinyVector<5>{0, 1, 2, 3, 3});
        P += Q;
        REQUIRE(P == R);
      }
    
      SECTION("power")
      {
        Polynomial<2> P(TinyVector<3>{2, -3, 3});
        Polynomial<4> R(TinyVector<5>{4, -12, 21, -18, 9});
        Polynomial<1> Q(TinyVector<2>{0, 2});
        Polynomial<2> S = Q.pow<2>(2);
        REQUIRE(P.pow<2>(2) == R);
        REQUIRE(S == Polynomial<2>(TinyVector<3>{0, 0, 4}));
      }
    
      SECTION("composition")
      {
        Polynomial<2> P(TinyVector<3>{2, -3, 3});
        Polynomial<1> Q(TinyVector<2>{0, 2});
        Polynomial<2> R(TinyVector<3>{2, -1, 3});
        Polynomial<2> S(TinyVector<3>{1, 2, 2});
        REQUIRE(P.compose(Q) == Polynomial<2>(TinyVector<3>{2, -6, 12}));
        REQUIRE(P.compose2(Q) == Polynomial<2>(TinyVector<3>{2, -6, 12}));
        REQUIRE(R(S) == Polynomial<4>(TinyVector<5>{4, 10, 22, 24, 12}));
      }
    
      SECTION("Lagrange polynomial")
      {
        Polynomial<1> S(TinyVector<2>{0.5, -0.5});
        Polynomial<1> Q;
        Q = lagrangePolynomial<1>(TinyVector<2>{-1, 1}, 0);
        REQUIRE(S == Q);
        Polynomial<2> P(TinyVector<3>{0, -0.5, 0.5});
        Polynomial<2> R;
        R = lagrangePolynomial<2>(TinyVector<3>{-1, 0, 1}, 0);
        REQUIRE(R == P);
        const std::array<Polynomial<2>, 3> basis = lagrangeBasis(TinyVector<3>{-1, 0, 1});
        REQUIRE(lagrangeToCanonical(TinyVector<3>{1, 0, 1}, basis) == Polynomial<2>(TinyVector<3>{0, 0, 1}));
      }
    }