Select Git revision
HyperelasticSolver.cpp
test_Polynomial.cpp 5.36 KiB
#include <catch2/catch_test_macros.hpp>
#include <Kokkos_Core.hpp>
#include <utils/PugsAssert.hpp>
#include <utils/Types.hpp>
#include <algebra/TinyMatrix.hpp>
#include <analysis/Polynomial.hpp>
// Instantiate to ensure full coverage is performed
template class Polynomial<0>;
template class Polynomial<1>;
template class Polynomial<2>;
template class Polynomial<3>;
template class Polynomial<4>;
template class Polynomial<5>;
// clazy:excludeall=non-pod-global-static
TEST_CASE("Polynomial", "[analysis]")
{
SECTION("construction")
{
REQUIRE_NOTHROW(Polynomial<2>{TinyVector<3>{2, 3, 4}});
}
SECTION("degree")
{
Polynomial<2> P(TinyVector<3>{2, 3, 4});
REQUIRE(P.degree() == 2);
}
SECTION("equality")
{
Polynomial<2> P(TinyVector<3>{2, 3, 4});
Polynomial<2> Q(TinyVector<3>{2, 3, 4});
Polynomial<2> S(TinyVector<3>{2, 3, 5});
REQUIRE(P == Q);
REQUIRE(P != S);
}
SECTION("addition")
{
Polynomial<2> P(TinyVector<3>{2, 3, 4});
Polynomial<2> Q(TinyVector<3>{-1, -3, 2});
Polynomial<2> S(TinyVector<3>{1, 0, 6});
Polynomial<3> T(TinyVector<4>{0, 3, 1, -2});
Polynomial<3> U(TinyVector<4>{2, 6, 5, -2});
REQUIRE(S == (P + Q));
REQUIRE((T + P) == U);
}
SECTION("opposed")
{
Polynomial<2> P(TinyVector<3>{2, 3, 4});
Polynomial<2> Q = -P;
REQUIRE(Q == Polynomial<2>(TinyVector<3>{-2, -3, -4}));
}
SECTION("difference")
{
Polynomial<2> P(TinyVector<3>{2, 3, 4});
Polynomial<2> Q(TinyVector<3>{3, 4, 5});
Polynomial<2> D(TinyVector<3>{-1, -1, -1});
REQUIRE(D == (P - Q));
Polynomial<3> R(TinyVector<4>{2, 3, 4, 1});
REQUIRE(D == (P - Q));
REQUIRE((P - R) == Polynomial<3>(TinyVector<4>{0, 0, 0, -1}));
R -= P;
REQUIRE(R == Polynomial<3>(TinyVector<4>{0, 0, 0, 1}));
}
SECTION("product_by_scalar")
{
Polynomial<2> P(TinyVector<3>{2, 3, 4});
Polynomial<2> M(TinyVector<3>{6, 9, 12});
REQUIRE(M == (P * 3));
REQUIRE(M == (3 * P));
}
SECTION("product")
{
Polynomial<2> P(TinyVector<3>{2, 3, 4});
Polynomial<3> Q(TinyVector<4>{1, 2, -1, 1});
Polynomial<4> R;
Polynomial<5> S;
R = P;
S = P;
S *= Q;
REQUIRE(Polynomial<5>(TinyVector<6>{2, 7, 8, 7, -1, 4}) == (P * Q));
REQUIRE(Polynomial<5>(TinyVector<6>{2, 7, 8, 7, -1, 4}) == S);
// REQUIRE_THROWS_AS(R *= Q, AssertError);
}
SECTION("divide")
{
Polynomial<2> P(TinyVector<3>{1, 0, 1});
Polynomial<1> Q(TinyVector<2>{0, 1});
Polynomial<1> Q1(TinyVector<2>{0, 1});
Polynomial<2> R;
Polynomial<2> S;
REQUIRE(P.realDegree() == 2);
REQUIRE(Q.realDegree() == 1);
REQUIRE(Q1.realDegree() == 1);
divide(P, Q1, R, S);
REQUIRE(Polynomial<2>(TinyVector<3>{1, 0, 0}) == S);
REQUIRE(Polynomial<2>(TinyVector<3>{0, 1, 0}) == R);
}
SECTION("evaluation")
{
Polynomial<2> P(TinyVector<3>{2, -3, 4});
double result = P.evaluate(3);
REQUIRE(result == 29);
result = P(3);
REQUIRE(result == 29);
}
SECTION("primitive")
{
Polynomial<2> P(TinyVector<3>{2, -3, 4});
TinyVector<4> coefs = zero;
Polynomial<3> Q(coefs);
Q = primitive(P);
Polynomial<3> R(TinyVector<4>{0, 2, -3. / 2, 4. / 3});
REQUIRE(Q == R);
}
SECTION("integrate")
{
Polynomial<2> P(TinyVector<3>{2, -3, 3});
double xinf = -1;
double xsup = 1;
double result = integrate(P, xinf, xsup);
REQUIRE(result == 6);
result = symmetricIntegrate(P, 2);
REQUIRE(result == 24);
}
SECTION("derivative")
{
Polynomial<2> P(TinyVector<3>{2, -3, 3});
Polynomial<1> Q = derivative(P);
REQUIRE(Q == Polynomial<1>(TinyVector<2>{-3, 6}));
Polynomial<0> P2(TinyVector<1>{3});
Polynomial<0> R(TinyVector<1>{0});
REQUIRE(derivative(P2) == R);
}
SECTION("affectation")
{
Polynomial<2> Q(TinyVector<3>{2, -3, 3});
Polynomial<4> R(TinyVector<5>{2, -3, 3, 0, 0});
Polynomial<4> P(TinyVector<5>{0, 1, 2, 3, 3});
P = Q;
REQUIRE(P == R);
}
SECTION("affectation addition")
{
Polynomial<2> Q(TinyVector<3>{2, -3, 3});
Polynomial<4> R(TinyVector<5>{2, -2, 5, 3, 3});
Polynomial<4> P(TinyVector<5>{0, 1, 2, 3, 3});
P += Q;
REQUIRE(P == R);
}
SECTION("power")
{
Polynomial<2> P(TinyVector<3>{2, -3, 3});
Polynomial<4> R(TinyVector<5>{4, -12, 21, -18, 9});
Polynomial<1> Q(TinyVector<2>{0, 2});
Polynomial<2> S = Q.pow<2>(2);
REQUIRE(P.pow<2>(2) == R);
REQUIRE(S == Polynomial<2>(TinyVector<3>{0, 0, 4}));
}
SECTION("composition")
{
Polynomial<2> P(TinyVector<3>{2, -3, 3});
Polynomial<1> Q(TinyVector<2>{0, 2});
Polynomial<2> R(TinyVector<3>{2, -1, 3});
Polynomial<2> S(TinyVector<3>{1, 2, 2});
REQUIRE(P.compose(Q) == Polynomial<2>(TinyVector<3>{2, -6, 12}));
REQUIRE(P.compose2(Q) == Polynomial<2>(TinyVector<3>{2, -6, 12}));
REQUIRE(R(S) == Polynomial<4>(TinyVector<5>{4, 10, 22, 24, 12}));
}
SECTION("Lagrange polynomial")
{
Polynomial<1> S(TinyVector<2>{0.5, -0.5});
Polynomial<1> Q;
Q = lagrangePolynomial<1>(TinyVector<2>{-1, 1}, 0);
REQUIRE(S == Q);
Polynomial<2> P(TinyVector<3>{0, -0.5, 0.5});
Polynomial<2> R;
R = lagrangePolynomial<2>(TinyVector<3>{-1, 0, 1}, 0);
REQUIRE(R == P);
const std::array<Polynomial<2>, 3> basis = lagrangeBasis(TinyVector<3>{-1, 0, 1});
REQUIRE(lagrangeToCanonical(TinyVector<3>{1, 0, 1}, basis) == Polynomial<2>(TinyVector<3>{0, 0, 1}));
}
}