Skip to content
Snippets Groups Projects
Select Git revision
  • fc8dffa84fd26cbc67cebb895a75204060327ae8
  • develop default protected
  • feature/advection
  • feature/composite-scheme-other-fluxes
  • origin/stage/bouguettaia
  • save_clemence
  • feature/local-dt-fsi
  • feature/variational-hydro
  • feature/gmsh-reader
  • feature/reconstruction
  • feature/kinetic-schemes
  • feature/composite-scheme-sources
  • feature/serraille
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

GKS2.hpp

Blame
  • test_InterpolateItemArray.cpp 18.60 KiB
    #include <catch2/catch_test_macros.hpp>
    #include <catch2/matchers/catch_matchers_all.hpp>
    
    #include <language/ast/ASTBuilder.hpp>
    #include <language/ast/ASTModulesImporter.hpp>
    #include <language/ast/ASTNodeDataTypeBuilder.hpp>
    #include <language/ast/ASTNodeExpressionBuilder.hpp>
    #include <language/ast/ASTNodeFunctionEvaluationExpressionBuilder.hpp>
    #include <language/ast/ASTNodeFunctionExpressionBuilder.hpp>
    #include <language/ast/ASTNodeTypeCleaner.hpp>
    #include <language/ast/ASTSymbolTableBuilder.hpp>
    #include <language/utils/PugsFunctionAdapter.hpp>
    #include <language/utils/SymbolTable.hpp>
    
    #include <MeshDataBaseForTests.hpp>
    #include <mesh/Connectivity.hpp>
    #include <mesh/Mesh.hpp>
    #include <mesh/MeshData.hpp>
    #include <mesh/MeshDataManager.hpp>
    
    #include <language/utils/InterpolateItemArray.hpp>
    
    #include <pegtl/string_input.hpp>
    
    // clazy:excludeall=non-pod-global-static
    
    TEST_CASE("InterpolateItemArray", "[language]")
    {
      SECTION("interpolate on all items")
      {
        auto same_cell_array = [](auto f, auto g) -> bool {
          using ItemIdType = typename decltype(f)::index_type;
    
          for (ItemIdType item_id = 0; item_id < f.numberOfItems(); ++item_id) {
            for (size_t i = 0; i < f.sizeOfArrays(); ++i) {
              if (f[item_id][i] != g[item_id][i]) {
                return false;
              }
            }
          }
    
          return true;
        };
    
        SECTION("1D")
        {
          constexpr size_t Dimension = 1;
    
          std::array mesh_list = MeshDataBaseForTests::get().all1DMeshes();
    
          for (const auto& named_mesh : mesh_list) {
            SECTION(named_mesh.name())
            {
              auto mesh_1d = named_mesh.mesh();
    
              auto xj = MeshDataManager::instance().getMeshData(*mesh_1d).xj();
    
              std::string_view data = R"(
    import math;
    let scalar_affine_1d: R^1 -> R, x -> 2*x[0] + 2;
    let scalar_non_linear_1d: R^1 -> R, x -> 2 * exp(x[0]) + 3;
    )";
              TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"};
    
              auto ast = ASTBuilder::build(input);
    
              ASTModulesImporter{*ast};
              ASTNodeTypeCleaner<language::import_instruction>{*ast};
    
              ASTSymbolTableBuilder{*ast};
              ASTNodeDataTypeBuilder{*ast};
    
              ASTNodeTypeCleaner<language::var_declaration>{*ast};
              ASTNodeTypeCleaner<language::fct_declaration>{*ast};
              ASTNodeExpressionBuilder{*ast};
    
              std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table;
    
              TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"};
              position.byte = data.size();   // ensure that variables are declared at this point
    
              std::vector<FunctionSymbolId> function_symbol_id_list;
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_affine_1d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_non_linear_1d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              CellArray<double> cell_array{mesh_1d->connectivity(), 2};
              parallel_for(
                cell_array.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
                  const TinyVector<Dimension>& x = xj[cell_id];
                  cell_array[cell_id][0]         = 2 * x[0] + 2;
                  cell_array[cell_id][1]         = 2 * exp(x[0]) + 3;
                });
    
              CellArray<const double> interpolate_array =
                InterpolateItemArray<double(TinyVector<Dimension>)>::interpolate(function_symbol_id_list, xj);
    
              REQUIRE(same_cell_array(cell_array, interpolate_array));
            }
          }
        }
    
        SECTION("2D")
        {
          constexpr size_t Dimension = 2;
    
          std::array mesh_list = MeshDataBaseForTests::get().all2DMeshes();
    
          for (const auto& named_mesh : mesh_list) {
            SECTION(named_mesh.name())
            {
              auto mesh_2d = named_mesh.mesh();
    
              auto xj = MeshDataManager::instance().getMeshData(*mesh_2d).xj();
    
              std::string_view data = R"(
    import math;
    let scalar_affine_2d: R^2 -> R, x -> 2*x[0] + 3*x[1] + 2;
    let scalar_non_linear_2d: R^2 -> R, x -> 2*exp(x[0])*sin(x[1])+3;
    )";
              TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"};
    
              auto ast = ASTBuilder::build(input);
    
              ASTModulesImporter{*ast};
              ASTNodeTypeCleaner<language::import_instruction>{*ast};
    
              ASTSymbolTableBuilder{*ast};
              ASTNodeDataTypeBuilder{*ast};
    
              ASTNodeTypeCleaner<language::var_declaration>{*ast};
              ASTNodeTypeCleaner<language::fct_declaration>{*ast};
              ASTNodeExpressionBuilder{*ast};
    
              std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table;
    
              TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"};
              position.byte = data.size();   // ensure that variables are declared at this point
    
              std::vector<FunctionSymbolId> function_symbol_id_list;
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_affine_2d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_non_linear_2d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              CellArray<double> cell_array{mesh_2d->connectivity(), 2};
              parallel_for(
                cell_array.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
                  const TinyVector<Dimension>& x = xj[cell_id];
                  cell_array[cell_id][0]         = 2 * x[0] + 3 * x[1] + 2;
                  cell_array[cell_id][1]         = 2 * exp(x[0]) * sin(x[1]) + 3;
                });
    
              CellArray<const double> interpolate_array =
                InterpolateItemArray<double(TinyVector<Dimension>)>::interpolate(function_symbol_id_list, xj);
    
              REQUIRE(same_cell_array(cell_array, interpolate_array));
            }
          }
        }
    
        SECTION("3D")
        {
          constexpr size_t Dimension = 3;
    
          std::array mesh_list = MeshDataBaseForTests::get().all3DMeshes();
    
          for (const auto& named_mesh : mesh_list) {
            SECTION(named_mesh.name())
            {
              auto mesh_3d = named_mesh.mesh();
    
              auto xj = MeshDataManager::instance().getMeshData(*mesh_3d).xj();
    
              std::string_view data = R"(
    import math;
    let scalar_affine_3d: R^3 -> R, x -> 2 * x[0] + 3 * x[1] + 2 * x[2] - 1;
    let scalar_non_linear_3d: R^3 -> R, x -> 2 * exp(x[0]) * sin(x[1]) * x[2] + 3;
    )";
              TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"};
    
              auto ast = ASTBuilder::build(input);
    
              ASTModulesImporter{*ast};
              ASTNodeTypeCleaner<language::import_instruction>{*ast};
    
              ASTSymbolTableBuilder{*ast};
              ASTNodeDataTypeBuilder{*ast};
    
              ASTNodeTypeCleaner<language::var_declaration>{*ast};
              ASTNodeTypeCleaner<language::fct_declaration>{*ast};
              ASTNodeExpressionBuilder{*ast};
    
              std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table;
    
              TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"};
              position.byte = data.size();   // ensure that variables are declared at this point
    
              std::vector<FunctionSymbolId> function_symbol_id_list;
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_affine_3d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_non_linear_3d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              CellArray<double> cell_array{mesh_3d->connectivity(), 2};
              parallel_for(
                cell_array.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
                  const TinyVector<Dimension>& x = xj[cell_id];
                  cell_array[cell_id][0]         = 2 * x[0] + 3 * x[1] + 2 * x[2] - 1;
                  cell_array[cell_id][1]         = 2 * exp(x[0]) * sin(x[1]) * x[2] + 3;
                });
    
              CellArray<const double> interpolate_array =
                InterpolateItemArray<double(TinyVector<Dimension>)>::interpolate(function_symbol_id_list, xj);
    
              REQUIRE(same_cell_array(cell_array, interpolate_array));
            }
          }
        }
      }
    
      SECTION("interpolate on items list")
      {
        auto same_cell_value = [](auto interpolated, auto reference) -> bool {
          for (size_t i = 0; i < interpolated.numberOfRows(); ++i) {
            for (size_t j = 0; j < interpolated.numberOfColumns(); ++j) {
              if (interpolated[i][j] != reference[i][j]) {
                return false;
              }
            }
          }
          return true;
        };
    
        SECTION("1D")
        {
          constexpr size_t Dimension = 1;
    
          std::array mesh_list = MeshDataBaseForTests::get().all1DMeshes();
    
          for (const auto& named_mesh : mesh_list) {
            SECTION(named_mesh.name())
            {
              auto mesh_1d = named_mesh.mesh();
    
              auto xj = MeshDataManager::instance().getMeshData(*mesh_1d).xj();
    
              Array<const CellId> cell_id_list = [&] {
                Array<CellId> cell_ids{mesh_1d->numberOfCells() / 2};
                for (size_t i_cell = 0; i_cell < cell_ids.size(); ++i_cell) {
                  cell_ids[i_cell] = static_cast<CellId>(2 * i_cell);
                }
                return cell_ids;
              }();
    
              std::string_view data = R"(
    import math;
    let scalar_affine_1d: R^1 -> R, x -> 2*x[0] + 2;
    let scalar_non_linear_1d: R^1 -> R, x -> 2 * exp(x[0]) + 3;
    )";
              TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"};
    
              auto ast = ASTBuilder::build(input);
    
              ASTModulesImporter{*ast};
              ASTNodeTypeCleaner<language::import_instruction>{*ast};
    
              ASTSymbolTableBuilder{*ast};
              ASTNodeDataTypeBuilder{*ast};
    
              ASTNodeTypeCleaner<language::var_declaration>{*ast};
              ASTNodeTypeCleaner<language::fct_declaration>{*ast};
              ASTNodeExpressionBuilder{*ast};
    
              std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table;
    
              TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"};
              position.byte = data.size();   // ensure that variables are declared at this point
    
              std::vector<FunctionSymbolId> function_symbol_id_list;
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_affine_1d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_non_linear_1d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              Table<double> cell_array{cell_id_list.size(), 2};
              parallel_for(
                cell_id_list.size(), PUGS_LAMBDA(const size_t i) {
                  const TinyVector<Dimension>& x = xj[cell_id_list[i]];
                  cell_array[i][0]               = 2 * x[0] + 2;
                  cell_array[i][1]               = 2 * exp(x[0]) + 3;
                });
    
              Table<const double> interpolate_array =
                InterpolateItemArray<double(TinyVector<Dimension>)>::interpolate(function_symbol_id_list, xj, cell_id_list);
    
              REQUIRE(same_cell_value(cell_array, interpolate_array));
            }
          }
        }
    
        SECTION("2D")
        {
          constexpr size_t Dimension = 2;
    
          std::array mesh_list = MeshDataBaseForTests::get().all2DMeshes();
    
          for (const auto& named_mesh : mesh_list) {
            SECTION(named_mesh.name())
            {
              auto mesh_2d = named_mesh.mesh();
    
              auto xj = MeshDataManager::instance().getMeshData(*mesh_2d).xj();
    
              Array<CellId> cell_id_list{mesh_2d->numberOfCells() / 2};
              for (size_t i_cell = 0; i_cell < cell_id_list.size(); ++i_cell) {
                cell_id_list[i_cell] = static_cast<CellId>(2 * i_cell);
              }
    
              std::string_view data = R"(
    import math;
    let scalar_affine_2d: R^2 -> R, x -> 2*x[0] + 3*x[1] + 2;
    let scalar_non_linear_2d: R^2 -> R, x -> 2*exp(x[0])*sin(x[1])+3;
    )";
              TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"};
    
              auto ast = ASTBuilder::build(input);
    
              ASTModulesImporter{*ast};
              ASTNodeTypeCleaner<language::import_instruction>{*ast};
    
              ASTSymbolTableBuilder{*ast};
              ASTNodeDataTypeBuilder{*ast};
    
              ASTNodeTypeCleaner<language::var_declaration>{*ast};
              ASTNodeTypeCleaner<language::fct_declaration>{*ast};
              ASTNodeExpressionBuilder{*ast};
    
              std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table;
    
              TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"};
              position.byte = data.size();   // ensure that variables are declared at this point
    
              std::vector<FunctionSymbolId> function_symbol_id_list;
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_affine_2d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_non_linear_2d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              Table<double> cell_array{cell_id_list.size(), 2};
              parallel_for(
                cell_id_list.size(), PUGS_LAMBDA(const size_t i) {
                  const TinyVector<Dimension>& x = xj[cell_id_list[i]];
                  cell_array[i][0]               = 2 * x[0] + 3 * x[1] + 2;
                  cell_array[i][1]               = 2 * exp(x[0]) * sin(x[1]) + 3;
                });
    
              Table<const double> interpolate_array =
                InterpolateItemArray<double(TinyVector<Dimension>)>::interpolate(function_symbol_id_list, xj, cell_id_list);
    
              REQUIRE(same_cell_value(cell_array, interpolate_array));
            }
          }
        }
    
        SECTION("3D")
        {
          constexpr size_t Dimension = 3;
    
          std::array mesh_list = MeshDataBaseForTests::get().all3DMeshes();
    
          for (const auto& named_mesh : mesh_list) {
            SECTION(named_mesh.name())
            {
              auto mesh_3d = named_mesh.mesh();
    
              auto xj = MeshDataManager::instance().getMeshData(*mesh_3d).xj();
    
              Array<CellId> cell_id_list{mesh_3d->numberOfCells() / 2};
              for (size_t i_cell = 0; i_cell < cell_id_list.size(); ++i_cell) {
                cell_id_list[i_cell] = static_cast<CellId>(2 * i_cell);
              }
    
              std::string_view data = R"(
    import math;
    let scalar_affine_3d: R^3 -> R, x -> 2 * x[0] + 3 * x[1] + 2 * x[2] - 1;
    let scalar_non_linear_3d: R^3 -> R, x -> 2 * exp(x[0]) * sin(x[1]) * x[2] + 3;
    )";
              TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"};
    
              auto ast = ASTBuilder::build(input);
    
              ASTModulesImporter{*ast};
              ASTNodeTypeCleaner<language::import_instruction>{*ast};
    
              ASTSymbolTableBuilder{*ast};
              ASTNodeDataTypeBuilder{*ast};
    
              ASTNodeTypeCleaner<language::var_declaration>{*ast};
              ASTNodeTypeCleaner<language::fct_declaration>{*ast};
              ASTNodeExpressionBuilder{*ast};
    
              std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table;
    
              TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"};
              position.byte = data.size();   // ensure that variables are declared at this point
    
              std::vector<FunctionSymbolId> function_symbol_id_list;
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_affine_3d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              {
                auto [i_symbol, found] = symbol_table->find("scalar_non_linear_3d", position);
                REQUIRE(found);
                REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
    
                function_symbol_id_list.push_back(
                  FunctionSymbolId(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table));
              }
    
              Table<double> cell_array{cell_id_list.size(), 2};
              parallel_for(
                cell_id_list.size(), PUGS_LAMBDA(const size_t i) {
                  const TinyVector<Dimension>& x = xj[cell_id_list[i]];
                  cell_array[i][0]               = 2 * x[0] + 3 * x[1] + 2 * x[2] - 1;
                  cell_array[i][1]               = 2 * exp(x[0]) * sin(x[1]) * x[2] + 3;
                });
    
              Table<const double> interpolate_array =
                InterpolateItemArray<double(TinyVector<Dimension>)>::interpolate(function_symbol_id_list, xj, cell_id_list);
    
              REQUIRE(same_cell_value(cell_array, interpolate_array));
            }
          }
        }
      }
    }