Select Git revision
-
Stéphane Del Pino authoredStéphane Del Pino authored
test_EigenvalueSolver.cpp 4.62 KiB
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_all.hpp>
#include <algebra/CRSMatrix.hpp>
#include <algebra/CRSMatrixDescriptor.hpp>
#include <algebra/EigenvalueSolver.hpp>
#include <algebra/SmallMatrix.hpp>
#include <utils/pugs_config.hpp>
// clazy:excludeall=non-pod-global-static
TEST_CASE("EigenvalueSolver", "[algebra]")
{
SECTION("Sparse Matrices")
{
SECTION("symmetric system")
{
Array<int> non_zeros(3);
non_zeros.fill(3);
CRSMatrixDescriptor<double> S{3, 3, non_zeros};
S(0, 0) = 3;
S(0, 1) = 2;
S(0, 2) = 4;
S(1, 0) = 2;
S(1, 1) = 0;
S(1, 2) = 2;
S(2, 0) = 4;
S(2, 1) = 2;
S(2, 2) = 3;
CRSMatrix A{S.getCRSMatrix()};
SECTION("eigenvalues")
{
SmallArray<double> eigenvalues;
#ifdef PUGS_HAS_SLEPC
EigenvalueSolver{}.computeForSymmetricMatrix(A, eigenvalues);
REQUIRE(eigenvalues[0] == Catch::Approx(-1));
REQUIRE(eigenvalues[1] == Catch::Approx(-1));
REQUIRE(eigenvalues[2] == Catch::Approx(8));
#else // PUGS_HAS_SLEPC
REQUIRE_THROWS_WITH(EigenvalueSolver{}.computeForSymmetricMatrix(A, eigenvalues),
"not implemented yet: SLEPc is required to solve eigenvalue problems");
#endif // PUGS_HAS_SLEPC
}
SECTION("eigenvalues and eigenvectors")
{
SmallArray<double> eigenvalue_list;
std::vector<SmallVector<double>> eigenvector_list;
#ifdef PUGS_HAS_SLEPC
EigenvalueSolver{}.computeForSymmetricMatrix(A, eigenvalue_list, eigenvector_list);
REQUIRE(eigenvalue_list[0] == Catch::Approx(-1));
REQUIRE(eigenvalue_list[1] == Catch::Approx(-1));
REQUIRE(eigenvalue_list[2] == Catch::Approx(8));
SmallMatrix<double> P{3};
SmallMatrix<double> PT{3};
SmallMatrix<double> D{3};
D = zero;
for (size_t i = 0; i < 3; ++i) {
for (size_t j = 0; j < 3; ++j) {
P(i, j) = eigenvector_list[j][i];
PT(i, j) = eigenvector_list[i][j];
}
D(i, i) = eigenvalue_list[i];
}
SmallMatrix PDPT = P * D * PT;
for (size_t i = 0; i < 3; ++i) {
for (size_t j = 0; j < 3; ++j) {
REQUIRE(PDPT(i, j) - S(i, j) == Catch::Approx(0).margin(1E-13));
}
}
#else // PUGS_HAS_SLEPC
REQUIRE_THROWS_WITH(EigenvalueSolver{}.computeForSymmetricMatrix(A, eigenvalue_list, eigenvector_list),
"not implemented yet: SLEPc is required to solve eigenvalue problems");
#endif // PUGS_HAS_SLEPC
}
SECTION("eigenvalues and passage matrix")
{
SmallArray<double> eigenvalue_list;
SmallMatrix<double> P{};
#ifdef PUGS_HAS_SLEPC
EigenvalueSolver{}.computeForSymmetricMatrix(A, eigenvalue_list, P);
REQUIRE(eigenvalue_list[0] == Catch::Approx(-1));
REQUIRE(eigenvalue_list[1] == Catch::Approx(-1));
REQUIRE(eigenvalue_list[2] == Catch::Approx(8));
SmallMatrix<double> D{3};
D = zero;
for (size_t i = 0; i < 3; ++i) {
D(i, i) = eigenvalue_list[i];
}
SmallMatrix PT = transpose(P);
SmallMatrix PDPT = P * D * PT;
for (size_t i = 0; i < 3; ++i) {
for (size_t j = 0; j < 3; ++j) {
REQUIRE(PDPT(i, j) - S(i, j) == Catch::Approx(0).margin(1E-13));
}
}
#else // PUGS_HAS_SLEPC
REQUIRE_THROWS_WITH(EigenvalueSolver{}.computeForSymmetricMatrix(A, eigenvalue_list, P),
"not implemented yet: SLEPc is required to solve eigenvalue problems");
#endif // PUGS_HAS_SLEPC
}
SECTION("exponential of a matrix")
{
SmallMatrix<double> expA{};
SmallMatrix<double> expS{3};
expS(0, 0) = 1325.074593930307812;
expS(0, 1) = 662.353357244568285;
expS(0, 2) = 1324.70671448913637;
expS(1, 0) = expS(0, 1);
expS(1, 1) = 331.544558063455535;
expS(1, 2) = 662.353357244568185;
expS(2, 0) = expS(0, 2);
expS(2, 1) = expS(1, 2);
expS(2, 2) = expS(0, 0);
#ifdef PUGS_HAS_SLEPC
EigenvalueSolver{}.computeExpForSymmetricMatrix(A, expA);
for (size_t i = 0; i < 3; ++i) {
for (size_t j = 0; j < 3; ++j) {
REQUIRE(expA(i, j) - expS(i, j) == Catch::Approx(0).margin(1E-12));
}
}
#else // PUGS_HAS_SLEPC
REQUIRE_THROWS_WITH(EigenvalueSolver{}.computeExpForSymmetricMatrix(A, expP),
"not implemented yet: SLEPc is required to solve eigenvalue problems");
#endif // PUGS_HAS_SLEPC
}
}
}
}