Select Git revision
ASTCheckpointsInfo.hpp
test_DiscreteFunctionInterpolerByZone.cpp 43.96 KiB
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_all.hpp>
#include <language/ast/ASTBuilder.hpp>
#include <language/ast/ASTModulesImporter.hpp>
#include <language/ast/ASTNodeDataTypeBuilder.hpp>
#include <language/ast/ASTNodeExpressionBuilder.hpp>
#include <language/ast/ASTNodeFunctionEvaluationExpressionBuilder.hpp>
#include <language/ast/ASTNodeFunctionExpressionBuilder.hpp>
#include <language/ast/ASTNodeTypeCleaner.hpp>
#include <language/ast/ASTSymbolTableBuilder.hpp>
#include <language/utils/PugsFunctionAdapter.hpp>
#include <language/utils/SymbolTable.hpp>
#include <MeshDataBaseForTests.hpp>
#include <mesh/Connectivity.hpp>
#include <mesh/Mesh.hpp>
#include <mesh/MeshCellZone.hpp>
#include <mesh/MeshData.hpp>
#include <mesh/MeshDataManager.hpp>
#include <mesh/NamedZoneDescriptor.hpp>
#include <scheme/DiscreteFunctionDescriptorP0.hpp>
#include <scheme/DiscreteFunctionInterpoler.hpp>
#include <scheme/DiscreteFunctionP0.hpp>
#include <pegtl/string_input.hpp>
// clazy:excludeall=non-pod-global-static
TEST_CASE("DiscreteFunctionInterpolerByZone", "[scheme]")
{
auto same_cell_value = [](auto f, auto g) -> bool {
using ItemIdType = typename decltype(f)::index_type;
for (ItemIdType item_id = 0; item_id < f.numberOfItems(); ++item_id) {
if (f[item_id] != g[item_id]) {
return false;
}
}
return true;
};
SECTION("1D")
{
constexpr size_t Dimension = 1;
auto mesh_1d = MeshDataBaseForTests::get().unordered1DMesh();
std::vector<std::shared_ptr<const IZoneDescriptor>> zone_list;
zone_list.push_back(std::make_shared<NamedZoneDescriptor>("LEFT"));
auto mesh_cell_zone = getMeshCellZone(*mesh_1d, *zone_list[0]);
CellValue<bool> is_cell_in_zone{mesh_1d->connectivity()};
is_cell_in_zone.fill(false);
auto zone_cell_list = mesh_cell_zone.cellList();
for (size_t i_cell = 0; i_cell < zone_cell_list.size(); ++i_cell) {
is_cell_in_zone[zone_cell_list[i_cell]] = true;
}
auto xj = MeshDataManager::instance().getMeshData(*mesh_1d).xj();
std::string_view data = R"(
import math;
let B_scalar_non_linear_1d: R^1 -> B, x -> (exp(2 * x[0]) + 3 < 3.3);
let N_scalar_non_linear_1d: R^1 -> N, x -> floor(3 * x[0] * x[0] + 2);
let Z_scalar_non_linear_1d: R^1 -> Z, x -> floor(exp(2 * x[0]) - 1);
let R_scalar_non_linear_1d: R^1 -> R, x -> 2 * exp(x[0]) + 3;
let R1_non_linear_1d: R^1 -> R^1, x -> 2 * exp(x[0]);
let R2_non_linear_1d: R^1 -> R^2, x -> (2 * exp(x[0]), -3*x[0]);
let R3_non_linear_1d: R^1 -> R^3, x -> (2 * exp(x[0]) + 3, x[0] - 2, 3);
let R1x1_non_linear_1d: R^1 -> R^1x1, x -> (2 * exp(x[0]) * sin(x[0]) + 3);
let R2x2_non_linear_1d: R^1 -> R^2x2, x -> (2 * exp(x[0]) * sin(x[0]) + 3, sin(x[0] - 2 * x[0]), 3, x[0] * x[0]);
let R3x3_non_linear_1d: R^1 -> R^3x3, x -> (2 * exp(x[0]) * sin(x[0]) + 3, sin(x[0] - 2 * x[0]), 3, x[0] * x[0], -4*x[0], 2*x[0]+1, 3, -6*x[0], exp(x[0]));
)";
TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"};
auto ast = ASTBuilder::build(input);
ASTModulesImporter{*ast};
ASTNodeTypeCleaner<language::import_instruction>{*ast};
ASTSymbolTableBuilder{*ast};
ASTNodeDataTypeBuilder{*ast};
ASTNodeTypeCleaner<language::var_declaration>{*ast};
ASTNodeTypeCleaner<language::fct_declaration>{*ast};
ASTNodeExpressionBuilder{*ast};
std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table;
TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"};
position.byte = data.size(); // ensure that variables are declared at this point
SECTION("B_scalar_non_linear_1d")
{
auto [i_symbol, found] = symbol_table->find("B_scalar_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = std::exp(2 * x[0]) + 3 < 3.3;
} else {
cell_value[cell_id] = false;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("N_scalar_non_linear_1d")
{
auto [i_symbol, found] = symbol_table->find("N_scalar_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = std::floor(3 * x[0] * x[0] + 2);
} else {
cell_value[cell_id] = 0;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("Z_scalar_non_linear_1d")
{
auto [i_symbol, found] = symbol_table->find("Z_scalar_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = std::floor(std::exp(2 * x[0]) - 1);
} else {
cell_value[cell_id] = 0;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("R_scalar_non_linear_1d")
{
auto [i_symbol, found] = symbol_table->find("R_scalar_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = 2 * std::exp(x[0]) + 3;
} else {
cell_value[cell_id] = 0;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("R1_non_linear_1d")
{
using DataType = TinyVector<1>;
auto [i_symbol, found] = symbol_table->find("R1_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0])};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R2_non_linear_1d")
{
using DataType = TinyVector<2>;
auto [i_symbol, found] = symbol_table->find("R2_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]), -3 * x[0]};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R3_non_linear_1d")
{
using DataType = TinyVector<3>;
auto [i_symbol, found] = symbol_table->find("R3_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]) + 3, x[0] - 2, 3};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R1x1_non_linear_1d")
{
using DataType = TinyMatrix<1>;
auto [i_symbol, found] = symbol_table->find("R1x1_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]) * std::sin(x[0]) + 3};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R2x2_non_linear_1d")
{
using DataType = TinyMatrix<2>;
auto [i_symbol, found] = symbol_table->find("R2x2_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] =
DataType{2 * std::exp(x[0]) * std::sin(x[0]) + 3, std::sin(x[0] - 2 * x[0]), 3, x[0] * x[0]};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R3x3_non_linear_1d")
{
using DataType = TinyMatrix<3>;
auto [i_symbol, found] = symbol_table->find("R3x3_non_linear_1d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_1d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * exp(x[0]) * std::sin(x[0]) + 3,
std::sin(x[0] - 2 * x[0]),
3,
x[0] * x[0],
-4 * x[0],
2 * x[0] + 1,
3,
-6 * x[0],
std::exp(x[0])};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_1d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
}
SECTION("2D")
{
constexpr size_t Dimension = 2;
auto mesh_2d = MeshDataBaseForTests::get().hybrid2DMesh();
std::vector<std::shared_ptr<const IZoneDescriptor>> zone_list;
zone_list.push_back(std::make_shared<NamedZoneDescriptor>("LEFT"));
auto mesh_cell_zone = getMeshCellZone(*mesh_2d, *zone_list[0]);
CellValue<bool> is_cell_in_zone{mesh_2d->connectivity()};
is_cell_in_zone.fill(false);
auto zone_cell_list = mesh_cell_zone.cellList();
for (size_t i_cell = 0; i_cell < zone_cell_list.size(); ++i_cell) {
is_cell_in_zone[zone_cell_list[i_cell]] = true;
}
auto xj = MeshDataManager::instance().getMeshData(*mesh_2d).xj();
std::string_view data = R"(
import math;
let B_scalar_non_linear_2d: R^2 -> B, x -> (exp(2 * x[0])< 2*x[1]);
let N_scalar_non_linear_2d: R^2 -> N, x -> floor(3 * (x[0] + x[1]) * (x[0] + x[1]) + 2);
let Z_scalar_non_linear_2d: R^2 -> Z, x -> floor(exp(2 * x[0]) - 3 * x[1]);
let R_scalar_non_linear_2d: R^2 -> R, x -> 2 * exp(x[0]) + 3 * x[1];
let R1_non_linear_2d: R^2 -> R^1, x -> 2 * exp(x[0]);
let R2_non_linear_2d: R^2 -> R^2, x -> (2 * exp(x[0]), -3*x[1]);
let R3_non_linear_2d: R^2 -> R^3, x -> (2 * exp(x[0]) + 3, x[1] - 2, 3);
let R1x1_non_linear_2d: R^2 -> R^1x1, x -> (2 * exp(x[0]) * sin(x[1]) + 3);
let R2x2_non_linear_2d: R^2 -> R^2x2, x -> (2 * exp(x[0]) * sin(x[1]) + 3, sin(x[1] - 2 * x[0]), 3, x[1] * x[0]);
let R3x3_non_linear_2d: R^2 -> R^3x3, x -> (2 * exp(x[0]) * sin(x[1]) + 3, sin(x[1] - 2 * x[0]), 3, x[1] * x[0], -4*x[1], 2*x[0]+1, 3, -6*x[0], exp(x[1]));
)";
TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"};
auto ast = ASTBuilder::build(input);
ASTModulesImporter{*ast};
ASTNodeTypeCleaner<language::import_instruction>{*ast};
ASTSymbolTableBuilder{*ast};
ASTNodeDataTypeBuilder{*ast};
ASTNodeTypeCleaner<language::var_declaration>{*ast};
ASTNodeTypeCleaner<language::fct_declaration>{*ast};
ASTNodeExpressionBuilder{*ast};
std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table;
TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"};
position.byte = data.size(); // ensure that variables are declared at this point
SECTION("B_scalar_non_linear_2d")
{
auto [i_symbol, found] = symbol_table->find("B_scalar_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = std::exp(2 * x[0]) < 2 * x[1];
} else {
cell_value[cell_id] = false;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("N_scalar_non_linear_2d")
{
auto [i_symbol, found] = symbol_table->find("N_scalar_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = std::floor(3 * (x[0] + x[1]) * (x[0] + x[1]) + 2);
} else {
cell_value[cell_id] = 0;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("Z_scalar_non_linear_2d")
{
auto [i_symbol, found] = symbol_table->find("Z_scalar_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = std::floor(std::exp(2 * x[0]) - 3 * x[1]);
} else {
cell_value[cell_id] = 0;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("R_scalar_non_linear_2d")
{
auto [i_symbol, found] = symbol_table->find("R_scalar_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = 2 * std::exp(x[0]) + 3 * x[1];
} else {
cell_value[cell_id] = 0;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("R1_non_linear_2d")
{
using DataType = TinyVector<1>;
auto [i_symbol, found] = symbol_table->find("R1_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0])};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R2_non_linear_2d")
{
using DataType = TinyVector<2>;
auto [i_symbol, found] = symbol_table->find("R2_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]), -3 * x[1]};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R3_non_linear_2d")
{
using DataType = TinyVector<3>;
auto [i_symbol, found] = symbol_table->find("R3_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]) + 3, x[1] - 2, 3};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R1x1_non_linear_2d")
{
using DataType = TinyMatrix<1>;
auto [i_symbol, found] = symbol_table->find("R1x1_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]) * std::sin(x[1]) + 3};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R2x2_non_linear_2d")
{
using DataType = TinyMatrix<2>;
auto [i_symbol, found] = symbol_table->find("R2x2_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] =
DataType{2 * std::exp(x[0]) * std::sin(x[1]) + 3, std::sin(x[1] - 2 * x[0]), 3, x[1] * x[0]};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R3x3_non_linear_2d")
{
using DataType = TinyMatrix<3>;
auto [i_symbol, found] = symbol_table->find("R3x3_non_linear_2d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_2d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]) * std::sin(x[1]) + 3,
std::sin(x[1] - 2 * x[0]),
3,
x[1] * x[0],
-4 * x[1],
2 * x[0] + 1,
3,
-6 * x[0],
std::exp(x[1])};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_2d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
}
SECTION("3D")
{
constexpr size_t Dimension = 3;
auto mesh_3d = MeshDataBaseForTests::get().hybrid3DMesh();
std::vector<std::shared_ptr<const IZoneDescriptor>> zone_list;
zone_list.push_back(std::make_shared<NamedZoneDescriptor>("LEFT"));
auto mesh_cell_zone = getMeshCellZone(*mesh_3d, *zone_list[0]);
CellValue<bool> is_cell_in_zone{mesh_3d->connectivity()};
is_cell_in_zone.fill(false);
auto zone_cell_list = mesh_cell_zone.cellList();
for (size_t i_cell = 0; i_cell < zone_cell_list.size(); ++i_cell) {
is_cell_in_zone[zone_cell_list[i_cell]] = true;
}
auto xj = MeshDataManager::instance().getMeshData(*mesh_3d).xj();
std::string_view data = R"(
import math;
let B_scalar_non_linear_3d: R^3 -> B, x -> (exp(2 * x[0])< 2*x[1]+x[2]);
let N_scalar_non_linear_3d: R^3 -> N, x -> floor(3 * (x[0] + x[1]) * (x[0] + x[1]) + x[2] * x[2]);
let Z_scalar_non_linear_3d: R^3 -> Z, x -> floor(exp(2 * x[0]) - 3 * x[1] + x[2]);
let R_scalar_non_linear_3d: R^3 -> R, x -> 2 * exp(x[0]+x[2]) + 3 * x[1];
let R1_non_linear_3d: R^3 -> R^1, x -> 2 * exp(x[0])+sin(x[1] + x[2]);
let R2_non_linear_3d: R^3 -> R^2, x -> (2 * exp(x[0]), -3*x[1] * x[2]);
let R3_non_linear_3d: R^3 -> R^3, x -> (2 * exp(x[0]) + 3, x[1] - 2, 3 * x[2]);
let R1x1_non_linear_3d: R^3 -> R^1x1, x -> (2 * exp(x[0]) * sin(x[1]) + 3 * x[2]);
let R2x2_non_linear_3d: R^3 -> R^2x2, x -> (2 * exp(x[0]) * sin(x[1]) + 3, sin(x[2] - 2 * x[0]), 3, x[1] * x[0] - x[2]);
let R3x3_non_linear_3d: R^3 -> R^3x3, x -> (2 * exp(x[0]) * sin(x[1]) + 3, sin(x[1] - 2 * x[2]), 3, x[1] * x[2], -4*x[1], 2*x[2]+1, 3, -6*x[2], exp(x[1] + x[2]));
)";
TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"};
auto ast = ASTBuilder::build(input);
ASTModulesImporter{*ast};
ASTNodeTypeCleaner<language::import_instruction>{*ast};
ASTSymbolTableBuilder{*ast};
ASTNodeDataTypeBuilder{*ast};
ASTNodeTypeCleaner<language::var_declaration>{*ast};
ASTNodeTypeCleaner<language::fct_declaration>{*ast};
ASTNodeExpressionBuilder{*ast};
std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table;
TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"};
position.byte = data.size(); // ensure that variables are declared at this point
SECTION("B_scalar_non_linear_3d")
{
auto [i_symbol, found] = symbol_table->find("B_scalar_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = std::exp(2 * x[0]) < 2 * x[1] + x[2];
} else {
cell_value[cell_id] = false;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("N_scalar_non_linear_3d")
{
auto [i_symbol, found] = symbol_table->find("N_scalar_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = std::floor(3 * (x[0] + x[1]) * (x[0] + x[1]) + x[2] * x[2]);
} else {
cell_value[cell_id] = 0;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("Z_scalar_non_linear_3d")
{
auto [i_symbol, found] = symbol_table->find("Z_scalar_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = std::floor(std::exp(2 * x[0]) - 3 * x[1] + x[2]);
} else {
cell_value[cell_id] = 0;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("R_scalar_non_linear_3d")
{
auto [i_symbol, found] = symbol_table->find("R_scalar_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<double> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = 2 * std::exp(x[0] + x[2]) + 3 * x[1];
} else {
cell_value[cell_id] = 0;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, double>&>(*discrete_function)));
}
SECTION("R1_non_linear_3d")
{
using DataType = TinyVector<1>;
auto [i_symbol, found] = symbol_table->find("R1_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]) + std::sin(x[1] + x[2])};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R2_non_linear_3d")
{
using DataType = TinyVector<2>;
auto [i_symbol, found] = symbol_table->find("R2_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]), -3 * x[1] * x[2]};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R3_non_linear_3d")
{
using DataType = TinyVector<3>;
auto [i_symbol, found] = symbol_table->find("R3_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]) + 3, x[1] - 2, 3 * x[2]};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R1x1_non_linear_3d")
{
using DataType = TinyMatrix<1>;
auto [i_symbol, found] = symbol_table->find("R1x1_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]) * std::sin(x[1]) + 3 * x[2]};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R2x2_non_linear_3d")
{
using DataType = TinyMatrix<2>;
auto [i_symbol, found] = symbol_table->find("R2x2_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] =
DataType{2 * std::exp(x[0]) * std::sin(x[1]) + 3, std::sin(x[2] - 2 * x[0]), 3, x[1] * x[0] - x[2]};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
SECTION("R3x3_non_linear_3d")
{
using DataType = TinyMatrix<3>;
auto [i_symbol, found] = symbol_table->find("R3x3_non_linear_3d", position);
REQUIRE(found);
REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t);
FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table);
CellValue<DataType> cell_value{mesh_3d->connectivity()};
parallel_for(
cell_value.numberOfItems(), PUGS_LAMBDA(const CellId cell_id) {
if (is_cell_in_zone[cell_id]) {
const TinyVector<Dimension>& x = xj[cell_id];
cell_value[cell_id] = DataType{2 * std::exp(x[0]) * std::sin(x[1]) + 3,
std::sin(x[1] - 2 * x[2]),
3,
x[1] * x[2],
-4 * x[1],
2 * x[2] + 1,
3,
-6 * x[2],
std::exp(x[1] + x[2])};
} else {
cell_value[cell_id] = zero;
}
});
DiscreteFunctionInterpoler interpoler(mesh_3d, zone_list, std::make_shared<DiscreteFunctionDescriptorP0>(),
function_symbol_id);
std::shared_ptr discrete_function = interpoler.interpolate();
REQUIRE(
same_cell_value(cell_value, dynamic_cast<const DiscreteFunctionP0<Dimension, DataType>&>(*discrete_function)));
}
}
}