Skip to content
Snippets Groups Projects
Select Git revision
  • d0b0a720d3f76b473e69c588344cf122417338d8
  • develop default protected
  • feature/gmsh-reader
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • feature/escobar-smoother
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

MeshData.hpp

Blame
  • MeshData.hpp 3.08 KiB
    #ifndef MESH_DATA_HPP
    #define MESH_DATA_HPP
    
    #include <Kokkos_Core.hpp>
    #include <TinyVector.hpp>
    
    template <typename M>
    class MeshData
    {
    public:
      typedef M MeshType;
    
      typedef TinyVector<dimension> Rd;
    
      static constexpr size_t dimension = MeshType::dimension;
      static_assert(dimension>0, "dimension must be strictly positive");
    
      static constexpr double inv_dimension = 1./dimension;
    
    private:
      const MeshType& m_mesh;
      Kokkos::View<Rd**> m_Cjr;
      Kokkos::View<Rd*>  m_xj;
      Kokkos::View<double*>   m_Vj;
    
      KOKKOS_INLINE_FUNCTION
      void _updateCenter()
      { // Computes vertices isobarycenter
        if(dimension == 1) {
          const Kokkos::View<const Rd*> xr = m_mesh.xr();
          const Kokkos::View<const unsigned int**>& cell_nodes
    	= m_mesh.connectivity().cellNodes();
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	  m_xj[j] = 0.5*(xr[cell_nodes(j,0)]+xr[cell_nodes(j,1)]);
    	});
        } else {
          const Kokkos::View<const Rd*> xr = m_mesh.xr();
          const Kokkos::View<const unsigned int**>& cell_nodes
    	= m_mesh.connectivity().cellNodes();
          const Kokkos::View<const unsigned short*>& cell_nb_nodes
    	= m_mesh.connectivity().cellNbNodes();
          const Kokkos::View<const double*>& inv_cell_nb_nodes
    	= m_mesh.connectivity().invCellNbNodes();
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	  Rd X = zero;
    	  for (int R=0; R<cell_nb_nodes[j]; ++R) {
    	   X += xr[cell_nodes(j,R)];
    	  }
    	  m_xj[j] = inv_cell_nb_nodes[j]*X;
    	});
        }
      }
    
      KOKKOS_INLINE_FUNCTION
      void _updateVolume()
      {
        const Kokkos::View<const unsigned int**>& cell_nodes
          = m_mesh.connectivity().cellNodes();
    
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_mesh.connectivity().cellNbNodes();
    
        const Kokkos::View<const Rd*> xr = m_mesh.xr();
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	double sum_cjr_xr = 0;
    	for (int R=0; R<cell_nb_nodes[j]; ++R) {
    	  sum_cjr_xr += (xr[cell_nodes(j,R)], m_Cjr(j,R));
    	}
    	m_Vj[j] = inv_dimension * sum_cjr_xr;
          });
      }
    
      KOKKOS_INLINE_FUNCTION
      void _updateCjr() {
        if(dimension == 1) {
          // Cjr are constant overtime
        }
        static_assert(dimension==1, "only 1d is implemented");
      }
    
    public:
      const MeshType& mesh() const
      {
        return m_mesh;
      }
    
      const Kokkos::View<const Rd**> Cjr() const
      {
        return m_Cjr;
      }
    
      const Kokkos::View<const Rd*> xj() const
      {
        return m_xj;
      }
    
      const Kokkos::View<const double*> Vj() const
      {
        return m_Vj;
      }
    
      void updateAllData()
      {
        this->_updateCenter();
        this->_updateVolume();
        this->_updateCjr();
      }
    
      MeshData(const MeshType& mesh)
        : m_mesh(mesh),
          m_Cjr("Cjr", mesh.numberOfCells(), mesh.connectivity().maxNbNodePerCell()),
          m_xj("xj", mesh.numberOfCells()),
          m_Vj("Vj", mesh.numberOfCells())
      {
        if (dimension==1) {
          // in 1d Cjr are computed once for all
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	  m_Cjr(j,0)=-1;
    	  m_Cjr(j,1)= 1;
    	});
        }
        this->updateAllData();
      }
    
      ~MeshData()
      {
        ;
      }
    };
    
    #endif // MESH_DATA_HPP