Skip to content
Snippets Groups Projects
Select Git revision
  • c1e36b912874ab7ee06da7408748e494eb7355db
  • develop default protected
  • feature/gmsh-reader
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • feature/escobar-smoother
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

PugsAssert.hpp

Blame
  • main.cpp 16.03 KiB
    #include <PastisUtils.hpp>
    #include <PastisOStream.hpp>
    
    #include <rang.hpp>
    
    #include <Connectivity.hpp>
    
    #include <Mesh.hpp>
    #include <BoundaryCondition.hpp>
    #include <AcousticSolver.hpp>
    
    #include <VTKWriter.hpp>
    
    #include <Timer.hpp>
    
    #include <TinyVector.hpp>
    #include <TinyMatrix.hpp>
    
    #include <BoundaryConditionDescriptor.hpp>
    
    #include <MeshNodeBoundary.hpp>
    
    #include <GmshReader.hpp>
    #include <PastisParser.hpp>
    
    #include <SynchronizerManager.hpp>
    
    #include <limits>
    #include <map>
    #include <regex>
    
    int main(int argc, char *argv[])
    {
      std::string filename = initialize(argc, argv);
    
       std::regex gmsh_regex("(.*).msh");
       if (not std::regex_match(filename, gmsh_regex))  {
          parser(filename);
          return 0;
       }
    
      std::map<std::string, double> method_cost_map;
    
      SynchronizerManager::create();
    
      if (filename != "") {
        pout() << "Reading (gmsh) " << rang::style::underline << filename << rang::style::reset << " ...\n";
        Timer gmsh_timer;
        gmsh_timer.reset();
        GmshReader gmsh_reader(filename);
        method_cost_map["Mesh building"] = gmsh_timer.seconds();
    
        std::shared_ptr<IMesh> p_mesh = gmsh_reader.mesh();
    
        switch (p_mesh->dimension()) {
          case 1: {
            std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX"};
            std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
            for (const auto& sym_boundary_name : sym_boundary_name_list){
              std::shared_ptr<BoundaryDescriptor> boudary_descriptor
                  = std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
              SymmetryBoundaryConditionDescriptor* sym_bc_descriptor
                  = new SymmetryBoundaryConditionDescriptor(boudary_descriptor);
    
              bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
            }
    
            using ConnectivityType = Connectivity1D;
            using MeshType = Mesh<ConnectivityType>;
            using MeshDataType = MeshData<MeshType>;
            using UnknownsType = FiniteVolumesEulerUnknowns<MeshDataType>;
    
            const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());
    
            Timer timer;
            timer.reset();
            MeshDataType mesh_data(mesh);
    
            std::vector<BoundaryConditionHandler> bc_list;
            {
              for (const auto& bc_descriptor : bc_descriptor_list) {
                switch (bc_descriptor->type()) {
                  case BoundaryConditionDescriptor::Type::symmetry: {
                    const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor
                        = dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
                    for (size_t i_ref_node_list=0; i_ref_node_list<mesh.connectivity().numberOfRefNodeList();
                         ++i_ref_node_list) {
                      const RefNodeList& ref_node_list = mesh.connectivity().refNodeList(i_ref_node_list);
                      const RefId& ref = ref_node_list.refId();
                      if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                        SymmetryBoundaryCondition<MeshType::Dimension>* sym_bc
                            = new SymmetryBoundaryCondition<MeshType::Dimension>(MeshFlatNodeBoundary<MeshType::Dimension>(mesh, ref_node_list));
                        std::shared_ptr<SymmetryBoundaryCondition<MeshType::Dimension>> bc(sym_bc);
                        bc_list.push_back(BoundaryConditionHandler(bc));
                      }
                    }
                    break;
                  }
                  default: {
                    perr() << "Unknown BCDescription\n";
                    std::exit(1);
                  }
                }
              }
            }
    
            UnknownsType unknowns(mesh_data);
    
            unknowns.initializeSod();
    
            AcousticSolver<MeshDataType> acoustic_solver(mesh_data, bc_list);
    
            using Rd = TinyVector<MeshType::Dimension>;
    
            const CellValue<const double>& Vj = mesh_data.Vj();
    
            const double tmax=0.2;
            double t=0;
    
            int itermax=std::numeric_limits<int>::max();
            int iteration=0;
    
            CellValue<double>& rhoj = unknowns.rhoj();
            CellValue<double>& ej = unknowns.ej();
            CellValue<double>& pj = unknowns.pj();
            CellValue<double>& gammaj = unknowns.gammaj();
            CellValue<double>& cj = unknowns.cj();
    
            BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
    
            VTKWriter vtk_writer("mesh", 0.01);
    
            while((t<tmax) and (iteration<itermax)) {
              vtk_writer.write(mesh, {NamedItemValue{"density", rhoj},
                                      NamedItemValue{"velocity", unknowns.uj()},
                                      NamedItemValue{"coords", mesh.xr()},
                                      NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                                      NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}},t);
              double dt = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
              if (t+dt>tmax) {
                dt=tmax-t;
              }
              acoustic_solver.computeNextStep(t,dt, unknowns);
    
              block_eos.updatePandCFromRhoE();
    
              t += dt;
              ++iteration;
            }
            vtk_writer.write(mesh, {NamedItemValue{"density", rhoj},
                                    NamedItemValue{"velocity", unknowns.uj()},
                                    NamedItemValue{"coords", mesh.xr()},
                                    NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                                    NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}}, t, true); // forces last output
    
            pout() << "* " << rang::style::underline << "Final time" << rang::style::reset
                   << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
    
            method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
    
            { // gnuplot output for density
              const CellValue<const Rd>& xj = mesh_data.xj();
              const CellValue<const double>& rhoj = unknowns.rhoj();
              std::ofstream fout("rho");
              for (CellId j=0; j<mesh.numberOfCells(); ++j) {
                fout << xj[j][0] << ' ' << rhoj[j] << '\n';
              }
            }
    
            break;
          }
          case 2: {
            // test case boundary condition description
            std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX", "YMIN", "YMAX"};
            std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
            for (const auto& sym_boundary_name : sym_boundary_name_list){
              std::shared_ptr<BoundaryDescriptor> boudary_descriptor
                  = std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
              SymmetryBoundaryConditionDescriptor* sym_bc_descriptor
                  = new SymmetryBoundaryConditionDescriptor(boudary_descriptor);
    
              bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
            }
    
            using ConnectivityType = Connectivity2D;
            using MeshType = Mesh<ConnectivityType>;
            using MeshDataType = MeshData<MeshType>;
            using UnknownsType = FiniteVolumesEulerUnknowns<MeshDataType>;
    
            const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());
    
            Timer timer;
            timer.reset();
            MeshDataType mesh_data(mesh);
    
            std::vector<BoundaryConditionHandler> bc_list;
            {
              for (const auto& bc_descriptor : bc_descriptor_list) {
                switch (bc_descriptor->type()) {
                  case BoundaryConditionDescriptor::Type::symmetry: {
                    const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor
                        = dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
                    for (size_t i_ref_face_list=0; i_ref_face_list<mesh.connectivity().numberOfRefFaceList();
                         ++i_ref_face_list) {
                      const RefFaceList& ref_face_list = mesh.connectivity().refFaceList(i_ref_face_list);
                      const RefId& ref = ref_face_list.refId();
                      if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                        SymmetryBoundaryCondition<MeshType::Dimension>* sym_bc
                            = new SymmetryBoundaryCondition<MeshType::Dimension>(MeshFlatNodeBoundary<MeshType::Dimension>(mesh, ref_face_list));
                        std::shared_ptr<SymmetryBoundaryCondition<MeshType::Dimension>> bc(sym_bc);
                        bc_list.push_back(BoundaryConditionHandler(bc));
                      }
                    }
                    break;
                  }
                  default: {
                    perr() << "Unknown BCDescription\n";
                    std::exit(1);
                  }
                }
              }
            }
    
            UnknownsType unknowns(mesh_data);
    
            unknowns.initializeSod();
    
            AcousticSolver<MeshDataType> acoustic_solver(mesh_data, bc_list);
    
            const CellValue<const double>& Vj = mesh_data.Vj();
    
            const double tmax=0.2;
            double t=0;
    
            int itermax=std::numeric_limits<int>::max();
            int iteration=0;
    
            CellValue<double>& rhoj = unknowns.rhoj();
            CellValue<double>& ej = unknowns.ej();
            CellValue<double>& pj = unknowns.pj();
            CellValue<double>& gammaj = unknowns.gammaj();
            CellValue<double>& cj = unknowns.cj();
    
            BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
    
            VTKWriter vtk_writer("mesh", 0.01);
    
            while((t<tmax) and (iteration<itermax)) {
              vtk_writer.write(mesh, {NamedItemValue{"density", rhoj},
                                      NamedItemValue{"velocity", unknowns.uj()},
                                      NamedItemValue{"coords", mesh.xr()},
                                      NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                                      NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}}, t);
              double dt = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
              if (t+dt>tmax) {
                dt=tmax-t;
              }
              acoustic_solver.computeNextStep(t,dt, unknowns);
    
              block_eos.updatePandCFromRhoE();
    
              t += dt;
              ++iteration;
            }
            vtk_writer.write(mesh, {NamedItemValue{"density", rhoj},
                                    NamedItemValue{"velocity", unknowns.uj()},
                                    NamedItemValue{"coords", mesh.xr()},
                                    NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                                    NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}}, t, true); // forces last output
    
            pout() << "* " << rang::style::underline << "Final time" << rang::style::reset
                   << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
    
            method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
            break;
          }
          case 3: {
            std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX", "YMIN", "YMAX", "ZMIN", "ZMAX"};
            std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
            for (const auto& sym_boundary_name : sym_boundary_name_list){
              std::shared_ptr<BoundaryDescriptor> boudary_descriptor
                  = std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
              SymmetryBoundaryConditionDescriptor* sym_bc_descriptor
                  = new SymmetryBoundaryConditionDescriptor(boudary_descriptor);
    
              bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
            }
    
            using ConnectivityType = Connectivity3D;
            using MeshType = Mesh<ConnectivityType>;
            using MeshDataType = MeshData<MeshType>;
            using UnknownsType = FiniteVolumesEulerUnknowns<MeshDataType>;
    
            const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());
    
            Timer timer;
            timer.reset();
            MeshDataType mesh_data(mesh);
    
            std::vector<BoundaryConditionHandler> bc_list;
            {
              for (const auto& bc_descriptor : bc_descriptor_list) {
                switch (bc_descriptor->type()) {
                  case BoundaryConditionDescriptor::Type::symmetry: {
                    const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor
                        = dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
                    for (size_t i_ref_face_list=0; i_ref_face_list<mesh.connectivity().numberOfRefFaceList();
                         ++i_ref_face_list) {
                      const RefFaceList& ref_face_list = mesh.connectivity().refFaceList(i_ref_face_list);
                      const RefId& ref = ref_face_list.refId();
                      if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                        SymmetryBoundaryCondition<MeshType::Dimension>* sym_bc
                            = new SymmetryBoundaryCondition<MeshType::Dimension>(MeshFlatNodeBoundary<MeshType::Dimension>(mesh, ref_face_list));
                        std::shared_ptr<SymmetryBoundaryCondition<MeshType::Dimension>> bc(sym_bc);
                        bc_list.push_back(BoundaryConditionHandler(bc));
                      }
                    }
                    break;
                  }
                  default: {
                    perr() << "Unknown BCDescription\n";
                    std::exit(1);
                  }
                }
              }
            }
    
            UnknownsType unknowns(mesh_data);
    
            unknowns.initializeSod();
    
            AcousticSolver<MeshDataType> acoustic_solver(mesh_data, bc_list);
    
            const CellValue<const double>& Vj = mesh_data.Vj();
    
            const double tmax=0.2;
            double t=0;
    
            int itermax=std::numeric_limits<int>::max();
            int iteration=0;
    
            CellValue<double>& rhoj = unknowns.rhoj();
            CellValue<double>& ej = unknowns.ej();
            CellValue<double>& pj = unknowns.pj();
            CellValue<double>& gammaj = unknowns.gammaj();
            CellValue<double>& cj = unknowns.cj();
    
            BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
    
            VTKWriter vtk_writer("mesh", 0.01);
    
            while((t<tmax) and (iteration<itermax)) {
              vtk_writer.write(mesh, {NamedItemValue{"density", rhoj},
                                      NamedItemValue{"velocity", unknowns.uj()},
                                      NamedItemValue{"coords", mesh.xr()},
                                      NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                                      NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}}, t);
              double dt = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
              if (t+dt>tmax) {
                dt=tmax-t;
              }
              acoustic_solver.computeNextStep(t,dt, unknowns);
              block_eos.updatePandCFromRhoE();
    
              t += dt;
              ++iteration;
            }
            vtk_writer.write(mesh, {NamedItemValue{"density", rhoj},
                                    NamedItemValue{"velocity", unknowns.uj()},
                                    NamedItemValue{"coords", mesh.xr()},
                                    NamedItemValue{"cell_owner", mesh.connectivity().cellOwner()},
                                    NamedItemValue{"node_owner", mesh.connectivity().nodeOwner()}}, t, true); // forces last output
    
            pout() << "* " << rang::style::underline << "Final time" << rang::style::reset
                   << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
    
            method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
            break;
          }
        }
    
        pout() << "* "  << rang::fgB::red << "Could not be uglier!" << rang::fg::reset << " (" << __FILE__ << ':' << __LINE__ << ")\n";
    
      } else {
        perr() << "Connectivity1D defined by number of nodes no more implemented\n";
        std::exit(0);
      }
    
      SynchronizerManager::destroy();
    
      finalize();
    
      std::string::size_type size=0;
      for (const auto& method_cost : method_cost_map) {
        size = std::max(size, method_cost.first.size());
      }
    
      for (const auto& method_cost : method_cost_map) {
        pout() << "* ["
               << rang::fgB::cyan
               << std::setw(size) << std::left
               << method_cost.first
               << rang::fg::reset
               << "] Execution time: "
               << rang::style::bold
               << method_cost.second
               << rang::style::reset << '\n';
      }
    
      return 0;
    }