Skip to content
Snippets Groups Projects
Select Git revision
  • c1b35ca4d5df2b2052224274c26bea7a8eee8ac5
  • develop default protected
  • feature/advection
  • feature/composite-scheme-other-fluxes
  • origin/stage/bouguettaia
  • save_clemence
  • feature/local-dt-fsi
  • feature/variational-hydro
  • feature/gmsh-reader
  • feature/reconstruction
  • feature/kinetic-schemes
  • feature/composite-scheme-sources
  • feature/serraille
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

test_IfProcessor.cpp

Blame
  • DiamondDualMeshBuilder.cpp 10.58 KiB
    #include <mesh/DiamondDualMeshBuilder.hpp>
    
    #include <mesh/Connectivity.hpp>
    #include <mesh/ConnectivityDescriptor.hpp>
    #include <mesh/ConnectivityDispatcher.hpp>
    #include <mesh/DiamondDualConnectivityBuilder.hpp>
    #include <mesh/DiamondDualConnectivityManager.hpp>
    #include <mesh/ItemValueUtils.hpp>
    #include <mesh/Mesh.hpp>
    #include <mesh/MeshData.hpp>
    #include <mesh/MeshDataManager.hpp>
    #include <mesh/RefId.hpp>
    #include <utils/Array.hpp>
    #include <utils/CastArray.hpp>
    #include <utils/Messenger.hpp>
    #include <utils/PugsAssert.hpp>
    
    template <size_t Dimension>
    class MeshToDualDataMapper
    {
     private:
      const IConnectivity* m_primal_connectivity;
      const IConnectivity* m_dual_connectivity;
    
      using NodeIdToNodeIdMap = Array<std::pair<NodeId, NodeId>>;
      NodeIdToNodeIdMap m_primal_node_to_dual_node_map;
    
      using CellIdToNodeIdMap = Array<std::pair<CellId, NodeId>>;
      CellIdToNodeIdMap m_primal_cell_to_dual_node_map;
    
      using FaceIdToCellIdMap = Array<std::pair<FaceId, CellId>>;
      FaceIdToCellIdMap m_primal_face_to_dual_cell_map;
    
     public:
      template <typename OriginDataType1, typename OriginDataType2, typename DestinationDataType>
      void
      toDualNode(const NodeValue<OriginDataType1>& primal_node_value,
                 const CellValue<OriginDataType2>& primal_cell_value,
                 const NodeValue<DestinationDataType>& dual_node_value)
      {
        static_assert(not std::is_const_v<DestinationDataType>, "destination data type must not be constant");
        static_assert(std::is_same_v<std::remove_const_t<OriginDataType1>, DestinationDataType>, "incompatible types");
        static_assert(std::is_same_v<std::remove_const_t<OriginDataType2>, DestinationDataType>, "incompatible types");
    
        Assert(m_primal_connectivity == primal_cell_value.connectivity_ptr().get());
        Assert(m_primal_connectivity == primal_node_value.connectivity_ptr().get());
        Assert(m_dual_connectivity == dual_node_value.connectivity_ptr().get());
    
        parallel_for(
          m_primal_node_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
            const auto [primal_node_id, dual_node_id] = m_primal_node_to_dual_node_map[i];
    
            dual_node_value[dual_node_id] = primal_node_value[primal_node_id];
          });
    
        parallel_for(
          m_primal_cell_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
            const auto [primal_cell_id, dual_node_id] = m_primal_cell_to_dual_node_map[i];
            dual_node_value[dual_node_id]             = primal_cell_value[primal_cell_id];
          });
      }
    
      template <typename OriginDataType, typename DestinationDataType1, typename DestinationDataType2>
      void
      fromDualNode(const NodeValue<OriginDataType>& dual_node_value,
                   const NodeValue<DestinationDataType1>& primal_node_value,
                   const CellValue<DestinationDataType2>& primal_cell_value)
      {
        static_assert(not std::is_const_v<DestinationDataType1>, "destination data type must not be constant");
        static_assert(not std::is_const_v<DestinationDataType2>, "destination data type must not be constant");
        static_assert(std::is_same_v<std::remove_const_t<OriginDataType>, DestinationDataType1>, "incompatible types");
        static_assert(std::is_same_v<std::remove_const_t<OriginDataType>, DestinationDataType2>, "incompatible types");
    
        Assert(m_primal_connectivity == primal_cell_value.connectivity_ptr().get());
        Assert(m_primal_connectivity == primal_node_value.connectivity_ptr().get());
        Assert(m_dual_connectivity == dual_node_value.connectivity_ptr().get());
    
        parallel_for(
          m_primal_node_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
            const auto [primal_node_id, dual_node_id] = m_primal_node_to_dual_node_map[i];
    
            primal_node_value[primal_node_id] = dual_node_value[dual_node_id];
          });
    
        parallel_for(
          m_primal_cell_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
            const auto [primal_cell_id, dual_node_id] = m_primal_cell_to_dual_node_map[i];
            primal_cell_value[primal_cell_id]         = dual_node_value[dual_node_id];
          });
      }
    
      template <typename OriginDataType, typename DestinationDataType>
      void
      toDualCell(const FaceValue<OriginDataType>& primal_face_value, const CellValue<DestinationDataType>& dual_cell_value)
      {
        static_assert(not std::is_const_v<DestinationDataType>, "destination data type must not be constant");
        static_assert(std::is_same_v<std::remove_const_t<OriginDataType>, DestinationDataType>, "incompatible types");
    
        Assert(m_primal_connectivity == primal_face_value.connectivity_ptr().get());
        Assert(m_dual_connectivity == dual_cell_value.connectivity_ptr().get());
    
        parallel_for(
          m_primal_face_to_dual_cell_map.size(), PUGS_LAMBDA(size_t i) {
            const auto [primal_face_id, dual_cell_id] = m_primal_face_to_dual_cell_map[i];
    
            dual_cell_value[dual_cell_id] = primal_face_value[primal_face_id];
          });
    
        parallel_for(
          m_primal_cell_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
            const auto [primal_face_id, dual_cell_id] = m_primal_face_to_dual_cell_map[i];
    
            dual_cell_value[dual_cell_id] = primal_face_value[primal_face_id];
          });
      }
    
      template <typename OriginDataType, typename DestinationDataType>
      void
      fromDualCell(const CellValue<DestinationDataType>& dual_cell_value,
                   const FaceValue<OriginDataType>& primal_face_value)
      {
        static_assert(not std::is_const_v<DestinationDataType>, "destination data type must not be constant");
        static_assert(std::is_same_v<std::remove_const_t<OriginDataType>, DestinationDataType>, "incompatible types");
    
        Assert(m_primal_connectivity == primal_face_value.connectivity_ptr().get());
        Assert(m_dual_connectivity == dual_cell_value.connectivity_ptr().get());
    
        parallel_for(
          m_primal_face_to_dual_cell_map.size(), PUGS_LAMBDA(size_t i) {
            const auto [primal_face_id, dual_cell_id] = m_primal_face_to_dual_cell_map[i];
    
            primal_face_value[primal_face_id] = dual_cell_value[dual_cell_id];
          });
    
        parallel_for(
          m_primal_cell_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
            const auto [primal_face_id, dual_cell_id] = m_primal_face_to_dual_cell_map[i];
            primal_face_value[primal_face_id]         = dual_cell_value[dual_cell_id];
          });
      }
    
      MeshToDualDataMapper(const Connectivity<Dimension>& primal_connectivity,
                           const Connectivity<Dimension>& dual_connectivity)
        : m_primal_connectivity{&primal_connectivity}, m_dual_connectivity{&dual_connectivity}
      {
        if constexpr (Dimension == 1) {
          const auto& node_to_cell_matrix = primal_connectivity.nodeToCellMatrix();
    
          NodeId dual_node_id            = 0;
          m_primal_node_to_dual_node_map = [&]() {
            std::vector<std::pair<NodeId, NodeId>> primal_node_to_dual_node_vector;
            for (NodeId primal_node_id = 0; primal_node_id < primal_connectivity.numberOfNodes(); ++primal_node_id) {
              if (node_to_cell_matrix[primal_node_id].size() == 1) {
                primal_node_to_dual_node_vector.push_back(std::make_pair(primal_node_id, dual_node_id++));
              }
            }
            return convert_to_array(primal_node_to_dual_node_vector);
          }();
    
          m_primal_cell_to_dual_node_map = [&]() {
            CellIdToNodeIdMap primal_cell_to_dual_node_map{primal_connectivity.numberOfCells()};
            for (CellId primal_cell_id = 0; primal_cell_id < primal_cell_to_dual_node_map.size(); ++primal_cell_id) {
              primal_cell_to_dual_node_map[primal_cell_id] = std::make_pair(primal_cell_id, dual_node_id++);
            }
            return primal_cell_to_dual_node_map;
          }();
    
        } else {
          m_primal_node_to_dual_node_map = [&]() {
            NodeIdToNodeIdMap primal_node_to_dual_node_map{primal_connectivity.numberOfNodes()};
            for (NodeId primal_node_id = 0; primal_node_id < primal_node_to_dual_node_map.size(); ++primal_node_id) {
              const NodeId dual_node_id = primal_node_id;
    
              primal_node_to_dual_node_map[primal_node_id] = std::make_pair(primal_node_id, dual_node_id);
            }
            return primal_node_to_dual_node_map;
          }();
    
          m_primal_cell_to_dual_node_map = [&]() {
            CellIdToNodeIdMap primal_cell_to_dual_node_map{primal_connectivity.numberOfCells()};
            NodeId dual_node_id = m_primal_node_to_dual_node_map.size();
            for (CellId primal_cell_id = 0; primal_cell_id < primal_cell_to_dual_node_map.size(); ++primal_cell_id) {
              primal_cell_to_dual_node_map[primal_cell_id] = std::make_pair(primal_cell_id, dual_node_id++);
            }
            return primal_cell_to_dual_node_map;
          }();
        }
    
        m_primal_face_to_dual_cell_map = [&]() {
          FaceIdToCellIdMap primal_face_to_dual_cell_map{primal_connectivity.numberOfFaces()};
          for (size_t id = 0; id < primal_face_to_dual_cell_map.size(); ++id) {
            const CellId dual_cell_id   = id;
            const FaceId primal_face_id = id;
    
            primal_face_to_dual_cell_map[id] = std::make_pair(primal_face_id, dual_cell_id);
          }
          return primal_face_to_dual_cell_map;
        }();
      }
    };
    
    template <size_t Dimension>
    void
    DiamondDualMeshBuilder::_buildDualDiamondMeshFrom(const std::shared_ptr<const IMesh>& p_i_mesh)
    {
      using ConnectivityType = Connectivity<Dimension>;
      using MeshType         = Mesh<Connectivity<Dimension>>;
    
      std::shared_ptr p_primal_mesh = std::dynamic_pointer_cast<const MeshType>(p_i_mesh);
      const MeshType& primal_mesh   = *p_primal_mesh;
    
      DiamondDualConnectivityManager& manager = DiamondDualConnectivityManager::instance();
    
      std::shared_ptr<const ConnectivityType> p_diamond_connectivity =
        manager.getDiamondDualConnectivity(primal_mesh.connectivity());
    
      const ConnectivityType& diamond_connectivity = *p_diamond_connectivity;
    
      const NodeValue<const TinyVector<Dimension>> primal_xr = primal_mesh.xr();
    
      MeshData<Dimension>& primal_mesh_data                  = MeshDataManager::instance().getMeshData(primal_mesh);
      const CellValue<const TinyVector<Dimension>> primal_xj = primal_mesh_data.xj();
    
      MeshToDualDataMapper<Dimension> mesh_to_dual_data_mapper{primal_mesh.connectivity(), diamond_connectivity};
    
      NodeValue<TinyVector<Dimension>> diamond_xr{diamond_connectivity};
      mesh_to_dual_data_mapper.toDualNode(primal_xr, primal_xj, diamond_xr);
    
      m_mesh = std::make_shared<MeshType>(p_diamond_connectivity, diamond_xr);
    }
    
    DiamondDualMeshBuilder::DiamondDualMeshBuilder(const std::shared_ptr<const IMesh>& p_mesh)
    {
      std::cout << "building DiamondDualMesh\n";
    
      switch (p_mesh->dimension()) {
      case 1: {
        this->_buildDualDiamondMeshFrom<1>(p_mesh);
        break;
      }
      case 2: {
        this->_buildDualDiamondMeshFrom<2>(p_mesh);
        break;
      }
      case 3: {
        this->_buildDualDiamondMeshFrom<3>(p_mesh);
        break;
      }
      default: {
        throw UnexpectedError("invalid mesh dimension: " + std::to_string(p_mesh->dimension()));
      }
      }
    }