Skip to content
Snippets Groups Projects
Select Git revision
  • beb384d876853caa5c77c10d3648254ff10e7135
  • develop default protected
  • feature/variational-hydro
  • origin/stage/bouguettaia
  • feature/gmsh-reader
  • feature/reconstruction
  • save_clemence
  • feature/kinetic-schemes
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

AcousticSolver.cpp

Blame
  • Stéphane Del Pino's avatar
    Stéphane Del Pino authored
    The code works in 1D/2D but it is very expensive. Probably due to the
    allocations in the Polynomial class
    beb384d8
    History
    AcousticSolver.cpp 39.29 KiB
    #include <scheme/AcousticSolver.hpp>
    
    #include <analysis/Polynomial1D.hpp>
    #include <analysis/Polynomial1DRootComputer.hpp>
    #include <language/utils/InterpolateItemValue.hpp>
    #include <mesh/ItemValueUtils.hpp>
    #include <mesh/MeshNodeBoundary.hpp>
    #include <scheme/DirichletBoundaryConditionDescriptor.hpp>
    #include <scheme/DiscreteFunctionP0.hpp>
    #include <scheme/DiscreteFunctionUtils.hpp>
    #include <scheme/IBoundaryConditionDescriptor.hpp>
    #include <scheme/IDiscreteFunction.hpp>
    #include <scheme/IDiscreteFunctionDescriptor.hpp>
    #include <scheme/SymmetryBoundaryConditionDescriptor.hpp>
    
    #include <variant>
    #include <vector>
    
    template <size_t Dimension>
    double
    acoustic_dt(const DiscreteFunctionP0<Dimension, double>& c)
    {
      const std::shared_ptr<const Mesh<Connectivity<Dimension>>> mesh =
        std::dynamic_pointer_cast<const Mesh<Connectivity<Dimension>>>(c.mesh());
    
      const auto Vj = MeshDataManager::instance().getMeshData(*mesh).Vj();
      const auto Sj = MeshDataManager::instance().getMeshData(*mesh).sumOverRLjr();
    
      CellValue<double> local_dt{mesh->connectivity()};
      parallel_for(
        mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { local_dt[j] = 2 * Vj[j] / (Sj[j] * c[j]); });
    
      return min(local_dt);
    }
    
    double
    acoustic_dt(const std::shared_ptr<const IDiscreteFunction>& c)
    {
      if ((c->descriptor().type() != DiscreteFunctionType::P0) or (c->dataType() != ASTNodeDataType::double_t)) {
        throw NormalError("invalid discrete function type");
      }
    
      std::shared_ptr mesh = c->mesh();
    
      switch (mesh->dimension()) {
      case 1: {
        return acoustic_dt(dynamic_cast<const DiscreteFunctionP0<1, double>&>(*c));
      }
      case 2: {
        return acoustic_dt(dynamic_cast<const DiscreteFunctionP0<2, double>&>(*c));
      }
      case 3: {
        return acoustic_dt(dynamic_cast<const DiscreteFunctionP0<3, double>&>(*c));
      }
      default: {
        throw UnexpectedError("invalid mesh dimension");
      }
      }
    }
    
    template <size_t Dimension>
    class AcousticSolverHandler::AcousticSolver final : public AcousticSolverHandler::IAcousticSolver
    {
     private:
      using Rdxd = TinyMatrix<Dimension>;
      using Rd   = TinyVector<Dimension>;
    
      using MeshType     = Mesh<Connectivity<Dimension>>;
      using MeshDataType = MeshData<Dimension>;
    
      using DiscreteScalarFunction = DiscreteFunctionP0<Dimension, double>;
      using DiscreteVectorFunction = DiscreteFunctionP0<Dimension, Rd>;
    
      class PressureBoundaryCondition;
      class SymmetryBoundaryCondition;
      class VelocityBoundaryCondition;
    
      using BoundaryCondition =
        std::variant<PressureBoundaryCondition, SymmetryBoundaryCondition, VelocityBoundaryCondition>;
    
      using BoundaryConditionList = std::vector<BoundaryCondition>;
    
      const SolverType m_solver_type;
      BoundaryConditionList m_boundary_condition_list;
    
      NodeValue<const Rd> m_ur;
      NodeValuePerCell<const Rd> m_Fjr;
    
      NodeValuePerCell<const Rdxd> m_Ajr;
    
      CellValue<const double>
      _getRhoC(const DiscreteScalarFunction& rho, const DiscreteScalarFunction& c)
      {
        Assert(rho.mesh() == c.mesh());
    
        std::shared_ptr mesh = std::dynamic_pointer_cast<const MeshType>(rho.mesh());
    
        CellValue<double> rhoc{mesh->connectivity()};
        parallel_for(
          mesh->numberOfCells(), PUGS_LAMBDA(CellId cell_id) { rhoc[cell_id] = rho[cell_id] * c[cell_id]; });
    
        return rhoc;
      }
    
      NodeValuePerCell<const Rdxd>
      _computeGlaceAjr(const MeshType& mesh, const CellValue<const double>& rhoc)
      {
        MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(mesh);
    
        const NodeValuePerCell<const TinyVector<Dimension>> Cjr = mesh_data.Cjr();
        const NodeValuePerCell<const TinyVector<Dimension>> njr = mesh_data.njr();
    
        NodeValuePerCell<Rdxd> Ajr{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const size_t& nb_nodes = Ajr.numberOfSubValues(j);
            const double& rhoc_j   = rhoc[j];
            for (size_t r = 0; r < nb_nodes; ++r) {
              Ajr(j, r) = tensorProduct(rhoc_j * Cjr(j, r), njr(j, r));
            }
          });
    
        return Ajr;
      }
    
      NodeValuePerCell<const Rdxd>
      _computeEucclhydAjr(const MeshType& mesh, const CellValue<const double>& rhoc)
      {
        MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(mesh);
    
        const NodeValuePerFace<const Rd> Nlr = mesh_data.Nlr();
        const NodeValuePerFace<const Rd> nlr = mesh_data.nlr();
    
        const auto& face_to_node_matrix = mesh.connectivity().faceToNodeMatrix();
        const auto& cell_to_node_matrix = mesh.connectivity().cellToNodeMatrix();
        const auto& cell_to_face_matrix = mesh.connectivity().cellToFaceMatrix();
    
        NodeValuePerCell<Rdxd> Ajr{mesh.connectivity()};
    
        parallel_for(
          Ajr.numberOfValues(), PUGS_LAMBDA(size_t jr) { Ajr[jr] = zero; });
    
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            const auto& cell_faces = cell_to_face_matrix[j];
    
            const double& rho_c = rhoc[j];
    
            for (size_t L = 0; L < cell_faces.size(); ++L) {
              const FaceId& l        = cell_faces[L];
              const auto& face_nodes = face_to_node_matrix[l];
    
              auto local_node_number_in_cell = [&](NodeId node_number) {
                for (size_t i_node = 0; i_node < cell_nodes.size(); ++i_node) {
                  if (node_number == cell_nodes[i_node]) {
                    return i_node;
                  }
                }
                return std::numeric_limits<size_t>::max();
              };
    
              for (size_t rl = 0; rl < face_nodes.size(); ++rl) {
                const size_t R = local_node_number_in_cell(face_nodes[rl]);
                Ajr(j, R) += tensorProduct(rho_c * Nlr(l, rl), nlr(l, rl));
              }
            }
          });
    
        return Ajr;
      }
    
      NodeValuePerCell<const Rdxd>
      _computeAjr(const MeshType& mesh, const CellValue<const double>& rhoc)
      {
        if constexpr (Dimension == 1) {
          return _computeGlaceAjr(mesh, rhoc);
        } else {
          switch (m_solver_type) {
          case SolverType::Glace: {
            return _computeGlaceAjr(mesh, rhoc);
          }
          case SolverType::Eucclhyd: {
            return _computeEucclhydAjr(mesh, rhoc);
          }
          default: {
            throw UnexpectedError("invalid solver type");
          }
          }
        }
      }
    
      NodeValue<Rdxd>
      _computeAr(const MeshType& mesh, const NodeValuePerCell<const Rdxd>& Ajr)
      {
        const auto& node_to_cell_matrix               = mesh.connectivity().nodeToCellMatrix();
        const auto& node_local_numbers_in_their_cells = mesh.connectivity().nodeLocalNumbersInTheirCells();
    
        NodeValue<Rdxd> Ar{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfNodes(), PUGS_LAMBDA(NodeId r) {
            Rdxd sum                                   = zero;
            const auto& node_to_cell                   = node_to_cell_matrix[r];
            const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemValues(r);
    
            for (size_t j = 0; j < node_to_cell.size(); ++j) {
              const CellId J       = node_to_cell[j];
              const unsigned int R = node_local_number_in_its_cells[j];
              sum += Ajr(J, R);
            }
            Ar[r] = sum;
          });
    
        return Ar;
      }
    
      NodeValue<Rd>
      _computeBr(const Mesh<Connectivity<Dimension>>& mesh,
                 const NodeValuePerCell<const Rdxd>& Ajr,
                 const DiscreteVectorFunction& u,
                 const DiscreteScalarFunction& p)
      {
        MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(mesh);
    
        const NodeValuePerCell<const Rd>& Cjr = mesh_data.Cjr();
    
        const auto& node_to_cell_matrix               = mesh.connectivity().nodeToCellMatrix();
        const auto& node_local_numbers_in_their_cells = mesh.connectivity().nodeLocalNumbersInTheirCells();
    
        NodeValue<Rd> b{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfNodes(), PUGS_LAMBDA(NodeId r) {
            const auto& node_to_cell                   = node_to_cell_matrix[r];
            const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemValues(r);
    
            Rd br = zero;
            for (size_t j = 0; j < node_to_cell.size(); ++j) {
              const CellId J       = node_to_cell[j];
              const unsigned int R = node_local_number_in_its_cells[j];
              br += Ajr(J, R) * u[J] + p[J] * Cjr(J, R);
            }
    
            b[r] = br;
          });
    
        return b;
      }
    
      BoundaryConditionList
      _getBCList(const std::shared_ptr<const MeshType>& mesh,
                 const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list)
      {
        BoundaryConditionList bc_list;
    
        constexpr ItemType FaceType = [] {
          if constexpr (Dimension > 1) {
            return ItemType::face;
          } else {
            return ItemType::node;
          }
        }();
    
        for (const auto& bc_descriptor : bc_descriptor_list) {
          bool is_valid_boundary_condition = true;
    
          switch (bc_descriptor->type()) {
          case IBoundaryConditionDescriptor::Type::symmetry: {
            const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor =
              dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
            for (size_t i_ref_face_list = 0;
                 i_ref_face_list < mesh->connectivity().template numberOfRefItemList<FaceType>(); ++i_ref_face_list) {
              const auto& ref_face_list = mesh->connectivity().template refItemList<FaceType>(i_ref_face_list);
              const RefId& ref          = ref_face_list.refId();
              if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                SymmetryBoundaryCondition{MeshFlatNodeBoundary<Dimension>(mesh, ref_face_list)};
                bc_list.push_back(SymmetryBoundaryCondition{MeshFlatNodeBoundary<Dimension>(mesh, ref_face_list)});
              }
            }
            is_valid_boundary_condition = true;
            break;
          }
    
          case IBoundaryConditionDescriptor::Type::dirichlet: {
            const DirichletBoundaryConditionDescriptor& dirichlet_bc_descriptor =
              dynamic_cast<const DirichletBoundaryConditionDescriptor&>(*bc_descriptor);
            if (dirichlet_bc_descriptor.name() == "velocity") {
              for (size_t i_ref_face_list = 0;
                   i_ref_face_list < mesh->connectivity().template numberOfRefItemList<FaceType>(); ++i_ref_face_list) {
                const auto& ref_face_list = mesh->connectivity().template refItemList<FaceType>(i_ref_face_list);
                const RefId& ref          = ref_face_list.refId();
                if (ref == dirichlet_bc_descriptor.boundaryDescriptor()) {
                  MeshNodeBoundary<Dimension> mesh_node_boundary{mesh, ref_face_list};
    
                  const FunctionSymbolId velocity_id = dirichlet_bc_descriptor.rhsSymbolId();
    
                  const auto& node_list = mesh_node_boundary.nodeList();
    
                  Array<const TinyVector<Dimension>> value_list = InterpolateItemValue<TinyVector<Dimension>(
                    TinyVector<Dimension>)>::template interpolate<ItemType::node>(velocity_id, mesh->xr(), node_list);
    
                  bc_list.push_back(VelocityBoundaryCondition{node_list, value_list});
                }
              }
            } else if (dirichlet_bc_descriptor.name() == "pressure") {
              for (size_t i_ref_face_list = 0;
                   i_ref_face_list < mesh->connectivity().template numberOfRefItemList<FaceType>(); ++i_ref_face_list) {
                const auto& ref_face_list = mesh->connectivity().template refItemList<FaceType>(i_ref_face_list);
                const RefId& ref          = ref_face_list.refId();
                if (ref == dirichlet_bc_descriptor.boundaryDescriptor()) {
                  const auto& face_list = ref_face_list.list();
    
                  const FunctionSymbolId pressure_id = dirichlet_bc_descriptor.rhsSymbolId();
    
                  Array<const double> face_values = [&] {
                    if constexpr (Dimension == 1) {
                      return InterpolateItemValue<double(
                        TinyVector<Dimension>)>::template interpolate<FaceType>(pressure_id, mesh->xr(), face_list);
                    } else {
                      MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(*mesh);
    
                      return InterpolateItemValue<double(
                        TinyVector<Dimension>)>::template interpolate<FaceType>(pressure_id, mesh_data.xl(), face_list);
                    }
                  }();
    
                  bc_list.push_back(PressureBoundaryCondition{face_list, face_values});
                }
              }
            } else {
              is_valid_boundary_condition = false;
            }
            break;
          }
          default: {
            is_valid_boundary_condition = false;
          }
          }
          if (not is_valid_boundary_condition) {
            std::ostringstream error_msg;
            error_msg << *bc_descriptor << " is an invalid boundary condition for acoustic solver";
            throw NormalError(error_msg.str());
          }
        }
    
        return bc_list;
      }
    
      void _applyPressureBC(const MeshType& mesh, NodeValue<Rd>& br);
      void _applySymmetryBC(NodeValue<Rdxd>& Ar, NodeValue<Rd>& br);
      void _applyVelocityBC(NodeValue<Rdxd>& Ar, NodeValue<Rd>& br);
    
      void
      _applyBoundaryConditions(const MeshType& mesh, NodeValue<Rdxd>& Ar, NodeValue<Rd>& br)
      {
        this->_applyPressureBC(mesh, br);
        this->_applySymmetryBC(Ar, br);
        this->_applyVelocityBC(Ar, br);
      }
    
      NodeValue<const Rd>
      _computeUr(const MeshType& mesh, const NodeValue<Rdxd>& Ar, const NodeValue<Rd>& br)
      {
        NodeValue<Rd> u{mesh.connectivity()};
        parallel_for(
          mesh.numberOfNodes(), PUGS_LAMBDA(NodeId r) { u[r] = inverse(Ar[r]) * br[r]; });
    
        return u;
      }
    
      NodeValuePerCell<Rd>
      _computeFjr(const MeshType& mesh,
                  const NodeValuePerCell<const Rdxd>& Ajr,
                  const NodeValue<const Rd>& ur,
                  const DiscreteVectorFunction& u,
                  const DiscreteScalarFunction& p)
      {
        MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(mesh);
    
        const NodeValuePerCell<const Rd> Cjr = mesh_data.Cjr();
    
        const auto& cell_to_node_matrix = mesh.connectivity().cellToNodeMatrix();
    
        NodeValuePerCell<Rd> F{mesh.connectivity()};
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            for (size_t r = 0; r < cell_nodes.size(); ++r) {
              F(j, r) = Ajr(j, r) * (u[j] - ur[cell_nodes[r]]) + p[j] * Cjr(j, r);
            }
          });
    
        return F;
      }
    
      double
      _computeMaxDensityDt(const MeshType& mesh,
                           const DiscreteFunctionP0<Dimension, double>& rho,
                           const double dt_max) const
      {
        double dt = dt_max;
    
        MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(mesh);
    
        const NodeValuePerCell<const Rd> Cjr = mesh_data.Cjr();
        const CellValue<const double> Vj     = mesh_data.Vj();
    
        const auto& cell_to_node_matrix = mesh.connectivity().cellToNodeMatrix();
    
        CellValue<double> dVj{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            double dV = 0;
    
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
              dV += dot(Cjr(j, R), m_ur[r]);
            }
    
            dVj[j] = dV;
          });
    
        CellValue<double> Gj{mesh.connectivity()};
    
        if constexpr (Dimension == 2) {
          for (CellId j = 0; j < mesh.numberOfCells(); ++j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            double G = 0;
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r   = cell_nodes[R];
              const NodeId rp1 = cell_nodes[(R + 1) % cell_nodes.size()];
              G -= dot(m_ur[rp1], Rd{m_ur[r][1], -m_ur[r][0]});
            }
            Gj[j] = 0.5 * G;
          }
        }
    
        for (CellId j = 0; j < mesh.numberOfCells(); ++j) {
          Polynomial1D p_tau({1. / rho[j], dVj[j] / (rho[j] * Vj[j])});
          if constexpr (Dimension == 2) {
            p_tau = p_tau + Polynomial1D({0, 0, Gj[j] / (rho[j] * Vj[j])});
          }
          Polynomial1DRootComputer computer{p_tau, 0, dt};
          std::optional dt_tau = computer.getFirstRoot();
          if (dt_tau.has_value()) {
            Assert(dt_tau.value() <= dt);
            dt = dt_tau.value();
          }
        }
    
        if (dt != dt_max) {
          std::cout << "volume variation imposes time step\n";
        }
    
        if (dt < dt_max) {
          dt *= 0.95 * dt;
        }
    
        return parallel::allReduceMin(dt);
      }
    
      double
      _computeMaxEnergyDt(const MeshType& mesh,
                          const DiscreteScalarFunction& rho,
                          const DiscreteVectorFunction& u,
                          const DiscreteScalarFunction& E,
                          const DiscreteScalarFunction& p,
                          const double dt_max) const
      {
        double dt = dt_max;
    
        MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(mesh);
    
        const NodeValuePerCell<const Rd> Cjr = mesh_data.Cjr();
        const CellValue<const double> Vj     = mesh_data.Vj();
    
        const auto& cell_to_node_matrix = mesh.connectivity().cellToNodeMatrix();
    
        CellValue<double> dVj{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            double dV = 0;
    
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
              dV += dot(Cjr(j, R), m_ur[r]);
            }
    
            dVj[j] = dV;
          });
    
        CellValue<double> dSj{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            double dS = 0;
    
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
    
              Rd du = u[j] - m_ur[r];
              dS += dot(m_Ajr(j, R) * du, du);
            }
    
            dSj[j] = dS;
          });
    
        CellValue<Rd> dPj{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            Rd dP = zero;
    
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
    
              Rd du = u[j] - m_ur[r];
              dP += m_Ajr(j, R) * du;
            }
    
            dPj[j] = dP;
          });
    
        for (CellId j = 0; j < mesh.numberOfCells(); ++j) {
          const double inv_mj = 1 / (rho[j] * Vj[j]);
    
          Polynomial1D p_e(
            {E[j] - 0.5 * dot(u[j], u[j]), inv_mj * (dSj[j] - p[j] * dVj[j]), -inv_mj * inv_mj * dot(dPj[j], dPj[j])});
          Polynomial1DRootComputer computer{p_e, 0, dt};
          std::optional dt_e = computer.getFirstRoot();
          if (dt_e.has_value()) {
            Assert(dt_e.value() <= dt);
            dt = dt_e.value();
          }
        }
    
        if (dt < dt_max) {
          dt *= 0.95 * dt;
        }
    
        if (dt != dt_max) {
          std::cout << "internal energy variation imposes time step\n";
        }
    
        return parallel::allReduceMin(dt);
      }
    
      double
      _computeMaxEntropyDt(const MeshType& mesh,
                           const DiscreteScalarFunction& rho,
                           const DiscreteVectorFunction& u,
                           const DiscreteScalarFunction& p,
                           const double dt_max) const
      {
        double dt = dt_max;
    
        MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(mesh);
    
        const NodeValuePerCell<const Rd> Cjr = mesh_data.Cjr();
        const CellValue<const double> Vj     = mesh_data.Vj();
    
        const auto& cell_to_node_matrix = mesh.connectivity().cellToNodeMatrix();
    
        CellValue<double> dVj{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            double dV = 0;
    
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
              dV += dot(Cjr(j, R), m_ur[r]);
            }
    
            dVj[j] = dV;
          });
    
        CellValue<double> Gj{mesh.connectivity()};
    
        if constexpr (Dimension == 2) {
          for (CellId j = 0; j < mesh.numberOfCells(); ++j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            double G = 0;
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r   = cell_nodes[R];
              const NodeId rp1 = cell_nodes[(R + 1) % cell_nodes.size()];
              G -= dot(m_ur[rp1], Rd{m_ur[r][1], -m_ur[r][0]});
            }
            Gj[j] = 0.5 * G;
          }
        }
    
        CellValue<double> dSj{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            double dS = 0;
    
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
    
              const Rd du = u[j] - m_ur[r];
              dS += dot(m_Ajr(j, R) * du, du);
            }
    
            dSj[j] = dS;
          });
    
        CellValue<Rd> dPj{mesh.connectivity()};
    
        parallel_for(
          mesh.numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            Rd dP = zero;
    
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
    
              Rd du = u[j] - m_ur[r];
              dP += m_Ajr(j, R) * du;
            }
    
            dPj[j] = dP;
          });
    
    #warning fixed gamma value
        const double gamma = 1.4;
    
        for (CellId j = 0; j < mesh.numberOfCells(); ++j) {
          const double inv_mj = 1 / (rho[j] * Vj[j]);
          const double inv_Vj = 1 / Vj[j];
    
          Polynomial1D DT({0, 1});
          std::vector<double> delta_S = {dSj[j], -0.5 * inv_mj * dot(dPj[j], dPj[j])};
          if constexpr (Dimension == 2) {
            delta_S[1] += p[j] * Gj[j];
          }
          Polynomial1D p_S0(delta_S);
    
          std::vector<double> delta_V{dVj[j] /*, dG */};
          if constexpr (Dimension == 2) {
            delta_V.push_back(Gj[j]);
          }
          Polynomial1D p_deltaV(delta_V);
    
          Polynomial1D p_S1({dSj[j] - p[j] * dVj[j], -0.5 * inv_mj * dot(dPj[j], dPj[j])});
    
          Polynomial1D p_S =                                                                                 //
            p_S0                                                                                             //
            + (inv_Vj * DT) * (((gamma - 1) * p_S1) * p_deltaV + (gamma - 2) * p[j] * p_deltaV * p_deltaV)   //
            + (inv_Vj * DT) * (inv_Vj * DT) * (((gamma - 1) * (gamma - 2)) * p_S1) * p_deltaV * p_deltaV;
    
          Polynomial1DRootComputer computer{p_S, 0, dt};
          std::optional dt_S = computer.getFirstRoot();
          if (dt_S.has_value()) {
            Assert(dt_S.value() <= dt);
            dt = dt_S.value();
          }
        }
    
        if (dt != dt_max) {
          std::cout << "entropy variation imposes time step\n";
        }
        return parallel::allReduceMin(dt);
      }
    
      AcousticSolver(SolverType solver_type,
                     const std::shared_ptr<const MeshType>& p_mesh,
                     const DiscreteScalarFunction& rho,
                     const DiscreteScalarFunction& c,
                     const DiscreteVectorFunction& u,
                     const DiscreteScalarFunction& p,
                     const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list)
        : m_solver_type{solver_type}, m_boundary_condition_list{this->_getBCList(p_mesh, bc_descriptor_list)}
      {
        const MeshType& mesh = *p_mesh;
    
        CellValue<const double> rhoc     = this->_getRhoC(rho, c);
        NodeValuePerCell<const Rdxd> Ajr = this->_computeAjr(mesh, rhoc);
    
        m_Ajr = Ajr;
    
        NodeValue<Rdxd> Ar = this->_computeAr(mesh, Ajr);
        NodeValue<Rd> br   = this->_computeBr(mesh, Ajr, u, p);
    
        this->_applyBoundaryConditions(mesh, Ar, br);
    
        synchronize(Ar);
        synchronize(br);
    
        m_ur  = this->_computeUr(mesh, Ar, br);
        m_Fjr = this->_computeFjr(mesh, Ajr, m_ur, u, p);
      }
    
     public:
      std::tuple<std::shared_ptr<const IMesh>,
                 std::shared_ptr<const DiscreteFunctionP0<Dimension, double>>,
                 std::shared_ptr<const DiscreteFunctionP0<Dimension, Rd>>,
                 std::shared_ptr<const DiscreteFunctionP0<Dimension, double>>>
      apply(const double& dt,
            const std::shared_ptr<const MeshType>& mesh,
            const DiscreteFunctionP0<Dimension, double>& rho,
            const DiscreteFunctionP0<Dimension, Rd>& u,
            const DiscreteFunctionP0<Dimension, double>& E) const
      {
        const auto& cell_to_node_matrix = mesh->connectivity().cellToNodeMatrix();
    
        NodeValue<Rd> new_xr = copy(mesh->xr());
        parallel_for(
          mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) { new_xr[r] += dt * m_ur[r]; });
    
        std::shared_ptr<const MeshType> new_mesh = std::make_shared<MeshType>(mesh->shared_connectivity(), new_xr);
    
        CellValue<const double> Vj = MeshDataManager::instance().getMeshData(*mesh).Vj();
    
        CellValue<double> new_rho = copy(rho.cellValues());
        CellValue<Rd> new_u       = copy(u.cellValues());
        CellValue<double> new_E   = copy(E.cellValues());
    
        parallel_for(
          mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            Rd momentum_fluxes   = zero;
            double energy_fluxes = 0;
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
              momentum_fluxes += m_Fjr(j, R);
              energy_fluxes += dot(m_Fjr(j, R), m_ur[r]);
            }
            const double dt_over_Mj = dt / (rho[j] * Vj[j]);
            new_u[j] -= dt_over_Mj * momentum_fluxes;
            new_E[j] -= dt_over_Mj * energy_fluxes;
          });
    
        CellValue<const double> new_Vj = MeshDataManager::instance().getMeshData(*new_mesh).Vj();
    
        parallel_for(
          mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { new_rho[j] *= Vj[j] / new_Vj[j]; });
    
        return {new_mesh, std::make_shared<DiscreteScalarFunction>(new_mesh, new_rho),
                std::make_shared<DiscreteVectorFunction>(new_mesh, new_u),
                std::make_shared<DiscreteScalarFunction>(new_mesh, new_E)};
      }
    
      std::tuple<std::shared_ptr<const IMesh>,
                 std::shared_ptr<const IDiscreteFunction>,
                 std::shared_ptr<const IDiscreteFunction>,
                 std::shared_ptr<const IDiscreteFunction>>
      apply(const double& dt,
            const std::shared_ptr<const IDiscreteFunction>& rho,
            const std::shared_ptr<const IDiscreteFunction>& u,
            const std::shared_ptr<const IDiscreteFunction>& E) const
      {
        std::shared_ptr i_mesh = getCommonMesh({rho, u, E});
        if (not i_mesh) {
          throw NormalError("discrete functions are not defined on the same mesh");
        }
    
        if (not checkDiscretizationType({rho, u, E}, DiscreteFunctionType::P0)) {
          throw NormalError("acoustic solver expects P0 functions");
        }
    
        return this->apply(dt, std::dynamic_pointer_cast<const MeshType>(i_mesh),
                           *std::dynamic_pointer_cast<const DiscreteScalarFunction>(rho),
                           *std::dynamic_pointer_cast<const DiscreteVectorFunction>(u),
                           *std::dynamic_pointer_cast<const DiscreteScalarFunction>(E));
      }
    
      std::tuple<double,
                 std::shared_ptr<const IMesh>,
                 std::shared_ptr<const DiscreteScalarFunction>,
                 std::shared_ptr<const DiscreteVectorFunction>,
                 std::shared_ptr<const DiscreteScalarFunction>>
      apply_computing_entropic_dt(const double& dt_max,
                                  const std::shared_ptr<const MeshType>& mesh,
                                  const DiscreteScalarFunction& rho,
                                  const DiscreteVectorFunction& u,
                                  const DiscreteScalarFunction& E,
                                  const DiscreteScalarFunction& p) const
      {
        const auto& cell_to_node_matrix = mesh->connectivity().cellToNodeMatrix();
    
        double dt = dt_max;
    
        dt = _computeMaxDensityDt(*mesh, rho, dt);
        dt = _computeMaxEnergyDt(*mesh, rho, u, E, p, dt);
        dt = _computeMaxEntropyDt(*mesh, rho, u, p, dt);
    
        NodeValue<Rd> new_xr = copy(mesh->xr());
        parallel_for(
          mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) { new_xr[r] += dt * m_ur[r]; });
    
        std::shared_ptr<const MeshType> new_mesh = std::make_shared<MeshType>(mesh->shared_connectivity(), new_xr);
    
        CellValue<const double> Vj = MeshDataManager::instance().getMeshData(*mesh).Vj();
    
        CellValue<double> new_rho = copy(rho.cellValues());
        CellValue<Rd> new_u       = copy(u.cellValues());
        CellValue<double> new_E   = copy(E.cellValues());
    
        parallel_for(
          mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            Rd momentum_fluxes   = zero;
            double energy_fluxes = 0;
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
              momentum_fluxes += m_Fjr(j, R);
              energy_fluxes += dot(m_Fjr(j, R), m_ur[r]);
            }
            const double dt_over_Mj = dt / (rho[j] * Vj[j]);
            new_u[j] -= dt_over_Mj * momentum_fluxes;
            new_E[j] -= dt_over_Mj * energy_fluxes;
          });
    
        CellValue<const double> new_Vj = MeshDataManager::instance().getMeshData(*new_mesh).Vj();
    
        parallel_for(
          mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { new_rho[j] *= Vj[j] / new_Vj[j]; });
    
        return {dt, new_mesh, std::make_shared<DiscreteScalarFunction>(new_mesh, new_rho),
                std::make_shared<DiscreteVectorFunction>(new_mesh, new_u),
                std::make_shared<DiscreteScalarFunction>(new_mesh, new_E)};
      }
    
      std::tuple<double,
                 std::shared_ptr<const IMesh>,
                 std::shared_ptr<const IDiscreteFunction>,
                 std::shared_ptr<const IDiscreteFunction>,
                 std::shared_ptr<const IDiscreteFunction>>
      apply_computing_entropic_dt(const double& dt_max,
                                  const std::shared_ptr<const IDiscreteFunction>& rho,
                                  const std::shared_ptr<const IDiscreteFunction>& u,
                                  const std::shared_ptr<const IDiscreteFunction>& E,
                                  const std::shared_ptr<const IDiscreteFunction>& p) const
      {
        std::shared_ptr i_mesh = getCommonMesh({rho, u, E});
        if (not i_mesh) {
          throw NormalError("discrete functions are not defined on the same mesh");
        }
    
        if (not checkDiscretizationType({rho, u, E}, DiscreteFunctionType::P0)) {
          throw NormalError("acoustic solver expects P0 functions");
        }
    
        return this->apply_computing_entropic_dt(dt_max, std::dynamic_pointer_cast<const MeshType>(i_mesh),
                                                 *std::dynamic_pointer_cast<const DiscreteScalarFunction>(rho),
                                                 *std::dynamic_pointer_cast<const DiscreteVectorFunction>(u),
                                                 *std::dynamic_pointer_cast<const DiscreteScalarFunction>(E),
                                                 *std::dynamic_pointer_cast<const DiscreteScalarFunction>(p));
      }
    
      AcousticSolver(SolverType solver_type,
                     const std::shared_ptr<const IMesh>& mesh,
                     const std::shared_ptr<const IDiscreteFunction>& rho,
                     const std::shared_ptr<const IDiscreteFunction>& c,
                     const std::shared_ptr<const IDiscreteFunction>& u,
                     const std::shared_ptr<const IDiscreteFunction>& p,
                     const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list)
        : AcousticSolver{solver_type,
                         std::dynamic_pointer_cast<const Mesh<Connectivity<Dimension>>>(mesh),
                         *std::dynamic_pointer_cast<const DiscreteScalarFunction>(rho),
                         *std::dynamic_pointer_cast<const DiscreteScalarFunction>(c),
                         *std::dynamic_pointer_cast<const DiscreteVectorFunction>(u),
                         *std::dynamic_pointer_cast<const DiscreteScalarFunction>(p),
                         bc_descriptor_list}
      {}
    
      AcousticSolver()                 = default;
      AcousticSolver(AcousticSolver&&) = default;
      ~AcousticSolver()                = default;
    };
    
    template <size_t Dimension>
    void
    AcousticSolverHandler::AcousticSolver<Dimension>::_applyPressureBC(const MeshType& mesh, NodeValue<Rd>& br)
    {
      for (const auto& boundary_condition : m_boundary_condition_list) {
        std::visit(
          [&](auto&& bc) {
            using T = std::decay_t<decltype(bc)>;
            if constexpr (std::is_same_v<PressureBoundaryCondition, T>) {
              MeshData<Dimension>& mesh_data = MeshDataManager::instance().getMeshData(mesh);
              if constexpr (Dimension == 1) {
                const NodeValuePerCell<const Rd> Cjr = mesh_data.Cjr();
    
                const auto& node_to_cell_matrix               = mesh.connectivity().nodeToCellMatrix();
                const auto& node_local_numbers_in_their_cells = mesh.connectivity().nodeLocalNumbersInTheirCells();
    
                const auto& node_list  = bc.faceList();
                const auto& value_list = bc.valueList();
                parallel_for(
                  node_list.size(), PUGS_LAMBDA(size_t i_node) {
                    const NodeId node_id       = node_list[i_node];
                    const auto& node_cell_list = node_to_cell_matrix[node_id];
                    Assert(node_cell_list.size() == 1);
    
                    CellId node_cell_id              = node_cell_list[0];
                    size_t node_local_number_in_cell = node_local_numbers_in_their_cells(node_id, 0);
    
                    br[node_id] -= value_list[i_node] * Cjr(node_cell_id, node_local_number_in_cell);
                  });
              } else {
                const NodeValuePerFace<const Rd> Nlr = mesh_data.Nlr();
    
                const auto& face_to_cell_matrix               = mesh.connectivity().faceToCellMatrix();
                const auto& face_to_node_matrix               = mesh.connectivity().faceToNodeMatrix();
                const auto& face_local_numbers_in_their_cells = mesh.connectivity().faceLocalNumbersInTheirCells();
                const auto& face_cell_is_reversed             = mesh.connectivity().cellFaceIsReversed();
    
                const auto& face_list  = bc.faceList();
                const auto& value_list = bc.valueList();
                for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
                  const FaceId face_id       = face_list[i_face];
                  const auto& face_cell_list = face_to_cell_matrix[face_id];
                  Assert(face_cell_list.size() == 1);
    
                  CellId face_cell_id              = face_cell_list[0];
                  size_t face_local_number_in_cell = face_local_numbers_in_their_cells(face_id, 0);
    
                  const double sign = face_cell_is_reversed(face_cell_id, face_local_number_in_cell) ? -1 : 1;
    
                  const auto& face_nodes = face_to_node_matrix[face_id];
    
                  for (size_t i_node = 0; i_node < face_nodes.size(); ++i_node) {
                    NodeId node_id = face_nodes[i_node];
                    br[node_id] -= sign * value_list[i_face] * Nlr(face_id, i_node);
                  }
                }
              }
            }
          },
          boundary_condition);
      }
    }
    
    template <size_t Dimension>
    void
    AcousticSolverHandler::AcousticSolver<Dimension>::_applySymmetryBC(NodeValue<Rdxd>& Ar, NodeValue<Rd>& br)
    {
      for (const auto& boundary_condition : m_boundary_condition_list) {
        std::visit(
          [&](auto&& bc) {
            using T = std::decay_t<decltype(bc)>;
            if constexpr (std::is_same_v<SymmetryBoundaryCondition, T>) {
              const Rd& n = bc.outgoingNormal();
    
              const Rdxd I   = identity;
              const Rdxd nxn = tensorProduct(n, n);
              const Rdxd P   = I - nxn;
    
              const Array<const NodeId>& node_list = bc.nodeList();
              parallel_for(
                bc.numberOfNodes(), PUGS_LAMBDA(int r_number) {
                  const NodeId r = node_list[r_number];
    
                  Ar[r] = P * Ar[r] * P + nxn;
                  br[r] = P * br[r];
                });
            }
          },
          boundary_condition);
      }
    }
    
    template <size_t Dimension>
    void
    AcousticSolverHandler::AcousticSolver<Dimension>::_applyVelocityBC(NodeValue<Rdxd>& Ar, NodeValue<Rd>& br)
    {
      for (const auto& boundary_condition : m_boundary_condition_list) {
        std::visit(
          [&](auto&& bc) {
            using T = std::decay_t<decltype(bc)>;
            if constexpr (std::is_same_v<VelocityBoundaryCondition, T>) {
              const auto& node_list  = bc.nodeList();
              const auto& value_list = bc.valueList();
    
              parallel_for(
                node_list.size(), PUGS_LAMBDA(size_t i_node) {
                  NodeId node_id    = node_list[i_node];
                  const auto& value = value_list[i_node];
    
                  Ar[node_id] = identity;
                  br[node_id] = value;
                });
            }
          },
          boundary_condition);
      }
    }
    
    template <size_t Dimension>
    class AcousticSolverHandler::AcousticSolver<Dimension>::PressureBoundaryCondition
    {
     private:
      const Array<const double> m_value_list;
      const Array<const FaceId> m_face_list;
    
     public:
      const Array<const FaceId>&
      faceList() const
      {
        return m_face_list;
      }
    
      const Array<const double>&
      valueList() const
      {
        return m_value_list;
      }
    
      PressureBoundaryCondition(const Array<const FaceId>& face_list, const Array<const double>& value_list)
        : m_value_list{value_list}, m_face_list{face_list}
      {}
    
      ~PressureBoundaryCondition() = default;
    };
    
    template <>
    class AcousticSolverHandler::AcousticSolver<1>::PressureBoundaryCondition
    {
     private:
      const Array<const double> m_value_list;
      const Array<const NodeId> m_face_list;
    
     public:
      const Array<const NodeId>&
      faceList() const
      {
        return m_face_list;
      }
    
      const Array<const double>&
      valueList() const
      {
        return m_value_list;
      }
    
      PressureBoundaryCondition(const Array<const NodeId>& face_list, const Array<const double>& value_list)
        : m_value_list{value_list}, m_face_list{face_list}
      {}
    
      ~PressureBoundaryCondition() = default;
    };
    
    template <size_t Dimension>
    class AcousticSolverHandler::AcousticSolver<Dimension>::VelocityBoundaryCondition
    {
     private:
      const Array<const TinyVector<Dimension>> m_value_list;
      const Array<const NodeId> m_node_list;
    
     public:
      const Array<const NodeId>&
      nodeList() const
      {
        return m_node_list;
      }
    
      const Array<const TinyVector<Dimension>>&
      valueList() const
      {
        return m_value_list;
      }
    
      VelocityBoundaryCondition(const Array<const NodeId>& node_list, const Array<const TinyVector<Dimension>>& value_list)
        : m_value_list{value_list}, m_node_list{node_list}
      {}
    
      ~VelocityBoundaryCondition() = default;
    };
    
    template <size_t Dimension>
    class AcousticSolverHandler::AcousticSolver<Dimension>::SymmetryBoundaryCondition
    {
     public:
      using Rd = TinyVector<Dimension, double>;
    
     private:
      const MeshFlatNodeBoundary<Dimension> m_mesh_flat_node_boundary;
    
     public:
      const Rd&
      outgoingNormal() const
      {
        return m_mesh_flat_node_boundary.outgoingNormal();
      }
    
      size_t
      numberOfNodes() const
      {
        return m_mesh_flat_node_boundary.nodeList().size();
      }
    
      const Array<const NodeId>&
      nodeList() const
      {
        return m_mesh_flat_node_boundary.nodeList();
      }
    
      SymmetryBoundaryCondition(const MeshFlatNodeBoundary<Dimension>& mesh_flat_node_boundary)
        : m_mesh_flat_node_boundary(mesh_flat_node_boundary)
      {
        ;
      }
    
      ~SymmetryBoundaryCondition() = default;
    };
    
    AcousticSolverHandler::AcousticSolverHandler(
      SolverType solver_type,
      const std::shared_ptr<const IDiscreteFunction>& rho,
      const std::shared_ptr<const IDiscreteFunction>& c,
      const std::shared_ptr<const IDiscreteFunction>& u,
      const std::shared_ptr<const IDiscreteFunction>& p,
      const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list)
    {
      std::shared_ptr i_mesh = getCommonMesh({rho, c, u, p});
      if (not i_mesh) {
        throw NormalError("discrete functions are not defined on the same mesh");
      }
    
      if (not checkDiscretizationType({rho, c, u, p}, DiscreteFunctionType::P0)) {
        throw NormalError("acoustic solver expects P0 functions");
      }
    
      switch (i_mesh->dimension()) {
      case 1: {
        m_acoustic_solver = std::make_unique<AcousticSolver<1>>(solver_type, i_mesh, rho, c, u, p, bc_descriptor_list);
        break;
      }
      case 2: {
        m_acoustic_solver = std::make_unique<AcousticSolver<2>>(solver_type, i_mesh, rho, c, u, p, bc_descriptor_list);
        break;
      }
      case 3: {
        m_acoustic_solver = std::make_unique<AcousticSolver<3>>(solver_type, i_mesh, rho, c, u, p, bc_descriptor_list);
        break;
      }
      default: {
        throw UnexpectedError("invalid mesh dimension");
      }
      }
    }