Skip to content
Snippets Groups Projects
Select Git revision
  • bde218cfe27535bd25826abc4c15ca13b6401491
  • develop default protected
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • feature/escobar-smoother
  • feature/hypoelasticity-clean
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

PrintScriptFrom.cpp

Blame
  • main.cpp 21.09 KiB
    #include <iostream>
    #include <Kokkos_Core.hpp>
    #include <RevisionInfo.hpp>
    #include <rang.hpp>
    #include <FPEManager.hpp>
    #include <SignalManager.hpp>
    #include <ConsoleManager.hpp>
    
    // #include <RawKokkosAcousticSolver.hpp>
    // #include <MeshLessAcousticSolver.hpp>
    // #include <AcousticSolverClass.hpp>
    // #include <AcousticSolverTest.hpp>
    
    #include <Connectivity1D.hpp>
    #include <Connectivity2D.hpp>
    #include <Connectivity3D.hpp>
    
    #include <Mesh.hpp>
    #include <BoundaryCondition.hpp>
    #include <AcousticSolver.hpp>
    
    #include <VTKWriter.hpp>
    
    #include <TinyVector.hpp>
    #include <TinyMatrix.hpp>
    
    #include <BoundaryConditionDescriptor.hpp>
    
    #include <MeshNodeBoundary.hpp>
    
    #include <GmshReader.hpp>
    #include <PastisParser.hpp>
    
    #include <CLI/CLI.hpp>
    #include <limits>
    #include <map>
    
    int main(int argc, char *argv[])
    {
      if (argc == 2) {
        parser(argv[1]);
        return 0;
      }
    
      long unsigned number = 10;
      std::string filename;
      {
        CLI::App app{"Pastis help"};
    
        app.add_option("-n,--number", number, "Number of cells");//->required();
    
        app.add_option("filename,-f,--filename", filename, "gmsh file");//->required();
    
        int threads=-1;
        app.add_option("--threads", threads, "Number of Kokkos threads")->check(CLI::Range(1,std::numeric_limits<decltype(threads)>::max()));
    
        std::string colorize="auto";
        app.add_set("--colorize", colorize, {"auto", "yes", "no"}, "Colorize console output", true);
    
        bool disable_fpe = false;
        app.add_flag("--no-fpe", disable_fpe, "Do not trap floating point exceptions");
        bool disable_signals = false;
        app.add_flag("--no-signal", disable_signals, "Do not catches signals");
    
        std::string pause_on_error="auto";
        app.add_set("--pause-on-error", pause_on_error, {"auto", "yes", "no"}, "Pause for debugging on unexpected error", true);
    
        std::atexit([](){std::cout << rang::style::reset;});
        try {
          app.parse(argc, argv);
        } catch (const CLI::ParseError &e) {
          return app.exit(e);
        }
    
        ConsoleManager::init(colorize);
        FPEManager::init(not disable_fpe);
        SignalManager::setPauseForDebug(pause_on_error);
        SignalManager::init(not disable_signals);
      }
    
      std::cout << "Code version: "
                << rang::style::bold << RevisionInfo::version() << rang::style::reset << '\n';
    
      std::cout << "-------------------- "
                << rang::fg::green
                << "git info"
                << rang::fg::reset
                <<" -------------------------"
                << '\n';
      std::cout << "tag:  " << rang::fg::reset
                << rang::style::bold << RevisionInfo::gitTag() << rang::style::reset << '\n';
      std::cout << "HEAD: " << rang::style::bold << RevisionInfo::gitHead() << rang::style::reset << '\n';
      std::cout << "hash: " << rang::style::bold << RevisionInfo::gitHash() << rang::style::reset << "  (";
    
      if (RevisionInfo::gitIsClean()) {
        std::cout << rang::fgB::green << "clean" << rang::fg::reset;
      } else {
        std::cout << rang::fgB::red << "dirty" << rang::fg::reset;
      }
      std::cout << ")\n";
      std::cout << "-------------------------------------------------------\n";
    
      Kokkos::initialize(argc, argv);
      Kokkos::DefaultExecutionSpace::print_configuration(std::cout);
    
      std::map<std::string, double> method_cost_map;
    
      // { // Basic function based acoustic solver
      //   Kokkos::Timer timer;
      //   timer.reset();
      //   RawKokkos::AcousticSolver(number);
      //   method_cost_map["RawKokkos"] = timer.seconds();
      // }
    
      // { // class for acoustic solver (mesh less)
      //   Kokkos::Timer timer;
      //   timer.reset();
      //   MeshLessAcousticSolver acoustic_solver(number);
      //   method_cost_map["MeshLessAcousticSolver"] = timer.seconds();
      // }
    
      // { // class for acoustic solver
      //   Kokkos::Timer timer;
      //   timer.reset();
      //   AcousticSolverClass acoustic_solver(number);
      //   method_cost_map["AcousticSolverClass"] = timer.seconds();
      // }
    
      // { // class for acoustic solver test
      //   Kokkos::Timer timer;
      //   timer.reset();
      //   AcousticSolverTest acoustic_solver(number);
      //   method_cost_map["AcousticSolverTest"] = timer.seconds();
      // }
      try  {
        if (filename != "") {
          std::cout << "Reading (gmsh) " << rang::style::underline << filename << rang::style::reset << " ...\n";
          Kokkos::Timer gmsh_timer;
          gmsh_timer.reset();
          GmshReader gmsh_reader(filename);
          method_cost_map["Mesh building"] = gmsh_timer.seconds();
    
          std::shared_ptr<IMesh> p_mesh = gmsh_reader.mesh();
    
          switch (p_mesh->meshDimension()) {
            case 1: {
              std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX"};
              std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
              for (const auto& sym_boundary_name : sym_boundary_name_list){
                std::shared_ptr<BoundaryDescriptor> boudary_descriptor
                    = std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
                SymmetryBoundaryConditionDescriptor* sym_bc_descriptor
                    = new SymmetryBoundaryConditionDescriptor(boudary_descriptor);
    
                bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
              }
    
              typedef Connectivity1D ConnectivityType;
              typedef Mesh<ConnectivityType> MeshType;
              typedef MeshData<MeshType> MeshDataType;
              typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType;
    
              const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());
    
              Kokkos::Timer timer;
              timer.reset();
              MeshDataType mesh_data(mesh);
    
              std::vector<BoundaryConditionHandler> bc_list;
              {
                for (const auto& bc_descriptor : bc_descriptor_list) {
                  switch (bc_descriptor->type()) {
                    case BoundaryConditionDescriptor::Type::symmetry: {
                      const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor
                          = dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
                      for (size_t i_ref_node_list=0; i_ref_node_list<mesh.connectivity().numberOfRefNodeList();
                           ++i_ref_node_list) {
                        const RefNodeList& ref_node_list = mesh.connectivity().refNodeList(i_ref_node_list);
                        const RefId& ref = ref_node_list.refId();
                        if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                          SymmetryBoundaryCondition<MeshType::dimension>* sym_bc
                              = new SymmetryBoundaryCondition<MeshType::dimension>(MeshFlatNodeBoundary<MeshType::dimension>(mesh, ref_node_list));
                          std::shared_ptr<SymmetryBoundaryCondition<MeshType::dimension>> bc(sym_bc);
                          bc_list.push_back(BoundaryConditionHandler(bc));
                        }
                      }
                      break;
                    }
                    default: {
                      std::cerr << "Unknown BCDescription\n";
                      std::exit(1);
                    }
                  }
                }
              }
    
              UnknownsType unknowns(mesh_data);
    
              unknowns.initializeSod();
    
              AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns, bc_list);
    
              typedef TinyVector<MeshType::dimension> Rd;
    
              const Kokkos::View<const double*> Vj = mesh_data.Vj();
              const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();
    
              const double tmax=0.2;
              double t=0;
    
              int itermax=std::numeric_limits<int>::max();
              int iteration=0;
    
              Kokkos::View<double*> rhoj = unknowns.rhoj();
              Kokkos::View<double*> ej = unknowns.ej();
              Kokkos::View<double*> pj = unknowns.pj();
              Kokkos::View<double*> gammaj = unknowns.gammaj();
              Kokkos::View<double*> cj = unknowns.cj();
    
              BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
    
              VTKWriter vtk_writer("mesh", 0.01);
    
              while((t<tmax) and (iteration<itermax)) {
                vtk_writer.write(mesh, t);
                double dt = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
                if (t+dt>tmax) {
                  dt=tmax-t;
                }
                acoustic_solver.computeNextStep(t,dt, unknowns);
    
                block_eos.updatePandCFromRhoE();
    
                t += dt;
                ++iteration;
              }
              vtk_writer.write(mesh, t, true); // forces last output
    
              std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
                        << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
    
              method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
    
              { // gnuplot output for density
                const Kokkos::View<const Rd*> xj   = mesh_data.xj();
                const Kokkos::View<const double*> rhoj = unknowns.rhoj();
                std::ofstream fout("rho");
                for (size_t j=0; j<mesh.numberOfCells(); ++j) {
                  fout << xj[j][0] << ' ' << rhoj[j] << '\n';
                }
              }
    
              break;
            }
            case 2: {
              // test case boundary condition description
              std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX", "YMIN", "YMAX"};
              std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
              for (const auto& sym_boundary_name : sym_boundary_name_list){
                std::shared_ptr<BoundaryDescriptor> boudary_descriptor
                    = std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
                SymmetryBoundaryConditionDescriptor* sym_bc_descriptor
                    = new SymmetryBoundaryConditionDescriptor(boudary_descriptor);
    
                bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
              }
    
              typedef Connectivity2D ConnectivityType;
              typedef Mesh<ConnectivityType> MeshType;
              typedef MeshData<MeshType> MeshDataType;
              typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType;
    
              const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());
    
              Kokkos::Timer timer;
              timer.reset();
              MeshDataType mesh_data(mesh);
    
              std::vector<BoundaryConditionHandler> bc_list;
              {
                for (const auto& bc_descriptor : bc_descriptor_list) {
                  switch (bc_descriptor->type()) {
                    case BoundaryConditionDescriptor::Type::symmetry: {
                      const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor
                          = dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
                      for (size_t i_ref_face_list=0; i_ref_face_list<mesh.connectivity().numberOfRefFaceList();
                           ++i_ref_face_list) {
                        const RefFaceList& ref_face_list = mesh.connectivity().refFaceList(i_ref_face_list);
                        const RefId& ref = ref_face_list.refId();
                        if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                          SymmetryBoundaryCondition<MeshType::dimension>* sym_bc
                              = new SymmetryBoundaryCondition<MeshType::dimension>(MeshFlatNodeBoundary<MeshType::dimension>(mesh, ref_face_list));
                          std::shared_ptr<SymmetryBoundaryCondition<MeshType::dimension>> bc(sym_bc);
                          bc_list.push_back(BoundaryConditionHandler(bc));
                        }
                      }
                      break;
                    }
                    default: {
                      std::cerr << "Unknown BCDescription\n";
                      std::exit(1);
                    }
                  }
                }
              }
    
              UnknownsType unknowns(mesh_data);
    
              unknowns.initializeSod();
    
              AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns, bc_list);
    
              typedef TinyVector<MeshType::dimension> Rd;
    
              const Kokkos::View<const double*> Vj = mesh_data.Vj();
              const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();
    
              const double tmax=0.2;
              double t=0;
    
              int itermax=std::numeric_limits<int>::max();
              int iteration=0;
    
              Kokkos::View<double*> rhoj = unknowns.rhoj();
              Kokkos::View<double*> ej = unknowns.ej();
              Kokkos::View<double*> pj = unknowns.pj();
              Kokkos::View<double*> gammaj = unknowns.gammaj();
              Kokkos::View<double*> cj = unknowns.cj();
    
              BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
    
              VTKWriter vtk_writer("mesh", 0.01);
    
              while((t<tmax) and (iteration<itermax)) {
                vtk_writer.write(mesh, t);
                double dt = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
                if (t+dt>tmax) {
                  dt=tmax-t;
                }
                acoustic_solver.computeNextStep(t,dt, unknowns);
    
                block_eos.updatePandCFromRhoE();
    
                t += dt;
                ++iteration;
              }
              vtk_writer.write(mesh, t, true); // forces last output
    
              std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
                        << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
    
              method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
              break;
            }
            case 3: {
              std::vector<std::string> sym_boundary_name_list = {"XMIN", "XMAX", "YMIN", "YMAX", "ZMIN", "ZMAX"};
              std::vector<std::shared_ptr<BoundaryConditionDescriptor>> bc_descriptor_list;
              for (const auto& sym_boundary_name : sym_boundary_name_list){
                std::shared_ptr<BoundaryDescriptor> boudary_descriptor
                    = std::shared_ptr<BoundaryDescriptor>(new NamedBoundaryDescriptor(sym_boundary_name));
                SymmetryBoundaryConditionDescriptor* sym_bc_descriptor
                    = new SymmetryBoundaryConditionDescriptor(boudary_descriptor);
    
                bc_descriptor_list.push_back(std::shared_ptr<BoundaryConditionDescriptor>(sym_bc_descriptor));
              }
    
              typedef Connectivity3D ConnectivityType;
              typedef Mesh<ConnectivityType> MeshType;
              typedef MeshData<MeshType> MeshDataType;
              typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType;
    
              const MeshType& mesh = dynamic_cast<const MeshType&>(*gmsh_reader.mesh());
    
              Kokkos::Timer timer;
              timer.reset();
              MeshDataType mesh_data(mesh);
    
              std::vector<BoundaryConditionHandler> bc_list;
              {
                for (const auto& bc_descriptor : bc_descriptor_list) {
                  switch (bc_descriptor->type()) {
                    case BoundaryConditionDescriptor::Type::symmetry: {
                      const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor
                          = dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
                      for (size_t i_ref_face_list=0; i_ref_face_list<mesh.connectivity().numberOfRefFaceList();
                           ++i_ref_face_list) {
                        const RefFaceList& ref_face_list = mesh.connectivity().refFaceList(i_ref_face_list);
                        const RefId& ref = ref_face_list.refId();
                        if (ref == sym_bc_descriptor.boundaryDescriptor()) {
                          SymmetryBoundaryCondition<MeshType::dimension>* sym_bc
                              = new SymmetryBoundaryCondition<MeshType::dimension>(MeshFlatNodeBoundary<MeshType::dimension>(mesh, ref_face_list));
                          std::shared_ptr<SymmetryBoundaryCondition<MeshType::dimension>> bc(sym_bc);
                          bc_list.push_back(BoundaryConditionHandler(bc));
                        }
                      }
                      break;
                    }
                    default: {
                      std::cerr << "Unknown BCDescription\n";
                      std::exit(1);
                    }
                  }
                }
              }
    
              UnknownsType unknowns(mesh_data);
    
              unknowns.initializeSod();
    
              AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns, bc_list);
    
              typedef TinyVector<MeshType::dimension> Rd;
    
              const Kokkos::View<const double*> Vj = mesh_data.Vj();
              const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();
    
              const double tmax=0.2;
              double t=0;
    
              int itermax=std::numeric_limits<int>::max();
              int iteration=0;
    
              Kokkos::View<double*> rhoj = unknowns.rhoj();
              Kokkos::View<double*> ej = unknowns.ej();
              Kokkos::View<double*> pj = unknowns.pj();
              Kokkos::View<double*> gammaj = unknowns.gammaj();
              Kokkos::View<double*> cj = unknowns.cj();
    
              BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
    
              VTKWriter vtk_writer("mesh", 0.01);
    
              while((t<tmax) and (iteration<itermax)) {
                vtk_writer.write(mesh, t);
                double dt = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
                if (t+dt>tmax) {
                  dt=tmax-t;
                }
                acoustic_solver.computeNextStep(t,dt, unknowns);
    
                block_eos.updatePandCFromRhoE();
    
                t += dt;
                ++iteration;
              }
              vtk_writer.write(mesh, t, true); // forces last output
    
              std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
                        << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
    
              method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
              break;
            }
          }
    
          std::cout << "* "  << rang::fgB::red << "Could not be uglier!" << rang::fg::reset << " (" << __FILE__ << ':' << __LINE__ << ")\n";
    
        } else {
          // class for acoustic solver test
          Kokkos::Timer timer;
          timer.reset();
          std::shared_ptr<Connectivity1D>connectivity( new Connectivity1D(number));
          typedef Mesh<Connectivity1D> MeshType;
          typedef MeshData<MeshType> MeshDataType;
          typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType;
    
          MeshType mesh(connectivity);
          MeshDataType mesh_data(mesh);
    
          std::vector<BoundaryConditionHandler> bc_list;
          { // quite dirty!
            // SymmetryBoundaryCondition<MeshType::dimension>* sym_bc0
            //     = new SymmetryBoundaryCondition<MeshType::dimension>(std::vector<unsigned int>({0u}),
            //                                                          TinyVector<1>(-1));
            // std::shared_ptr<SymmetryBoundaryCondition<1>> bc0(sym_bc0);
            // bc_list.push_back(BoundaryConditionHandler(bc0));
            PressureBoundaryCondition* pres_bc0
                = new PressureBoundaryCondition(1,
                                                std::vector<unsigned int>({static_cast<unsigned int>(0u)}));
            std::shared_ptr<PressureBoundaryCondition> bc0(pres_bc0);
            bc_list.push_back(BoundaryConditionHandler(bc0));
    
            PressureBoundaryCondition* pres_bc1
                = new PressureBoundaryCondition(0.1,
                                                std::vector<unsigned int>({static_cast<unsigned int>(mesh.numberOfCells())}));
            std::shared_ptr<PressureBoundaryCondition> bc1(pres_bc1);
            bc_list.push_back(BoundaryConditionHandler(bc1));
          }
    
          UnknownsType unknowns(mesh_data);
    
          unknowns.initializeSod();
    
          AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns, bc_list);
    
          typedef TinyVector<MeshType::dimension> Rd;
    
          const Kokkos::View<const double*> Vj = mesh_data.Vj();
          const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();
    
          const double tmax=0.2;
          double t=0;
    
          int itermax=std::numeric_limits<int>::max();
          int iteration=0;
    
          Kokkos::View<double*> rhoj = unknowns.rhoj();
          Kokkos::View<double*> ej = unknowns.ej();
          Kokkos::View<double*> pj = unknowns.pj();
          Kokkos::View<double*> gammaj = unknowns.gammaj();
          Kokkos::View<double*> cj = unknowns.cj();
    
          BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
    
          while((t<tmax) and (iteration<itermax)) {
            double dt = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
            if (t+dt>tmax) {
              dt=tmax-t;
            }
    
            acoustic_solver.computeNextStep(t,dt, unknowns);
    
            block_eos.updatePandCFromRhoE();
    
            t += dt;
            ++iteration;
          }
    
          std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
                    << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
    
          method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
    
          { // gnuplot output for density
            const Kokkos::View<const Rd*> xj   = mesh_data.xj();
            const Kokkos::View<const double*> rhoj = unknowns.rhoj();
            std::ofstream fout("rho");
            for (size_t j=0; j<mesh.numberOfCells(); ++j) {
              fout << xj[j][0] << ' ' << rhoj[j] << '\n';
            }
          }
    
        }
      }
      catch (const AssertError& error) {
        std::cerr << error << '\n';
        std::exit(1);
      }
    
      Kokkos::finalize();
    
      std::string::size_type size=0;
      for (const auto& method_cost : method_cost_map) {
        size = std::max(size, method_cost.first.size());
      }
    
      for (const auto& method_cost : method_cost_map) {
        std::cout << "* ["
          	      << rang::fgB::cyan
    	      << std::setw(size) << std::left
    	      << method_cost.first
    	      << rang::fg::reset
    	      << "] Execution time: "
    	      << rang::style::bold
    	      << method_cost.second
    	      << rang::style::reset << '\n';
      }
    
      return 0;
    }