Select Git revision
AcousticSolver.hpp
-
Stéphane Del Pino authored
Begin implementation of pressure boundary condition for acoustic solver
Stéphane Del Pino authoredBegin implementation of pressure boundary condition for acoustic solver
AcousticSolver.hpp 11.61 KiB
#ifndef ACOUSTIC_SOLVER_HPP
#define ACOUSTIC_SOLVER_HPP
#include <rang.hpp>
#include <utils/ArrayUtils.hpp>
#include <scheme/BlockPerfectGas.hpp>
#include <utils/PugsAssert.hpp>
#include <scheme/BoundaryCondition.hpp>
#include <scheme/FiniteVolumesEulerUnknowns.hpp>
#include <mesh/Mesh.hpp>
#include <mesh/MeshData.hpp>
#include <mesh/MeshDataManager.hpp>
#include <algebra/TinyMatrix.hpp>
#include <algebra/TinyVector.hpp>
#include <mesh/ItemValueUtils.hpp>
#include <mesh/SubItemValuePerItem.hpp>
#include <utils/Exceptions.hpp>
#include <utils/Messenger.hpp>
#include <iostream>
template <typename MeshType>
class AcousticSolver
{
constexpr static size_t Dimension = MeshType::Dimension;
using MeshDataType = MeshData<Dimension>;
using UnknownsType = FiniteVolumesEulerUnknowns<MeshType>;
std::shared_ptr<const MeshType> m_mesh;
const typename MeshType::Connectivity& m_connectivity;
const std::vector<BoundaryConditionHandler>& m_boundary_condition_list;
using Rd = TinyVector<Dimension>;
using Rdd = TinyMatrix<Dimension>;
private:
PUGS_INLINE
const CellValue<const double>
computeRhoCj(const CellValue<const double>& rhoj, const CellValue<const double>& cj)
{
parallel_for(
m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { m_rhocj[j] = rhoj[j] * cj[j]; });
return m_rhocj;
}
PUGS_INLINE
void
computeAjr(const CellValue<const double>& rhocj,
const NodeValuePerCell<const Rd>& Cjr,
const NodeValuePerCell<const double>& /* ljr */,
const NodeValuePerCell<const Rd>& njr)
{
parallel_for(
m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
const size_t& nb_nodes = m_Ajr.numberOfSubValues(j);
const double& rho_c = rhocj[j];
for (size_t r = 0; r < nb_nodes; ++r) {
m_Ajr(j, r) = tensorProduct(rho_c * Cjr(j, r), njr(j, r));
}
});
}
PUGS_INLINE
const NodeValue<const Rdd>
computeAr(const NodeValuePerCell<const Rdd>& Ajr)
{
const auto& node_to_cell_matrix = m_connectivity.nodeToCellMatrix();
const auto& node_local_numbers_in_their_cells = m_connectivity.nodeLocalNumbersInTheirCells();
parallel_for(
m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) {
Rdd sum = zero;
const auto& node_to_cell = node_to_cell_matrix[r];
const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemValues(r);
for (size_t j = 0; j < node_to_cell.size(); ++j) {
const CellId J = node_to_cell[j];
const unsigned int R = node_local_number_in_its_cells[j];
sum += Ajr(J, R);
}
m_Ar[r] = sum;
});
return m_Ar;
}
PUGS_INLINE
const NodeValue<const Rd>
computeBr(const NodeValuePerCell<Rdd>& Ajr,
const NodeValuePerCell<const Rd>& Cjr,
const CellValue<const Rd>& uj,
const CellValue<const double>& pj)
{
const auto& node_to_cell_matrix = m_connectivity.nodeToCellMatrix();
const auto& node_local_numbers_in_their_cells = m_connectivity.nodeLocalNumbersInTheirCells();
parallel_for(
m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) {
Rd& br = m_br[r];
br = zero;
const auto& node_to_cell = node_to_cell_matrix[r];
const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemValues(r);
for (size_t j = 0; j < node_to_cell.size(); ++j) {
const CellId J = node_to_cell[j];
const unsigned int R = node_local_number_in_its_cells[j];
br += Ajr(J, R) * uj[J] + pj[J] * Cjr(J, R);
}
});
return m_br;
}
void
applyBoundaryConditions()
{
for (const auto& handler : m_boundary_condition_list) {
switch (handler.boundaryCondition().type()) {
case BoundaryCondition::normal_velocity: {
throw NotImplementedError("normal_velocity BC");
}
case BoundaryCondition::velocity: {
throw NotImplementedError("velocity BC");
}
case BoundaryCondition::pressure: {
const PressureBoundaryCondition<Dimension>& pressure_bc =
dynamic_cast<const PressureBoundaryCondition<Dimension>&>(handler.boundaryCondition());
if constexpr (Dimension == 1) {
MeshData<Dimension>& mesh_data = MeshDataManager::instance().getMeshData(*m_mesh);
const NodeValuePerCell<const Rd> Cjr = mesh_data.Cjr();
const auto& node_to_cell_matrix = m_connectivity.nodeToCellMatrix();
const auto& node_local_numbers_in_their_cells = m_connectivity.nodeLocalNumbersInTheirCells();
const auto& node_list = pressure_bc.faceList();
const auto& value_list = pressure_bc.valueList();
for (size_t i_node = 0; i_node < node_list.size(); ++i_node) {
const NodeId node_id = node_list[i_node];
const auto& node_cell_list = node_to_cell_matrix[node_id];
Assert(node_cell_list.size() == 1);
CellId node_cell_id = node_cell_list[0];
size_t node_local_number_in_cell = node_local_numbers_in_their_cells(node_id, 0);
m_br[node_id] -= value_list[i_node] * Cjr(node_cell_id, node_local_number_in_cell);
}
} else {
throw NotImplementedError("pressure bc in dimension>1");
}
break;
}
case BoundaryCondition::symmetry: {
const SymmetryBoundaryCondition<Dimension>& symmetry_bc =
dynamic_cast<const SymmetryBoundaryCondition<Dimension>&>(handler.boundaryCondition());
const Rd& n = symmetry_bc.outgoingNormal();
const Rdd I = identity;
const Rdd nxn = tensorProduct(n, n);
const Rdd P = I - nxn;
const Array<const NodeId>& node_list = symmetry_bc.nodeList();
parallel_for(
symmetry_bc.numberOfNodes(), PUGS_LAMBDA(int r_number) {
const NodeId r = node_list[r_number];
m_Ar[r] = P * m_Ar[r] * P + nxn;
m_br[r] = P * m_br[r];
});
break;
}
}
}
}
NodeValue<Rd>
computeUr(const NodeValue<const Rdd>& Ar, const NodeValue<const Rd>& br)
{
inverse(Ar, m_inv_Ar);
const NodeValue<const Rdd> invAr = m_inv_Ar;
parallel_for(
m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) { m_ur[r] = invAr[r] * br[r]; });
return m_ur;
}
void
computeFjr(const NodeValuePerCell<Rdd>& Ajr,
const NodeValue<const Rd>& ur,
const NodeValuePerCell<const Rd>& Cjr,
const CellValue<const Rd>& uj,
const CellValue<const double>& pj)
{
const auto& cell_to_node_matrix = m_mesh->connectivity().cellToNodeMatrix();
parallel_for(
m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
const auto& cell_nodes = cell_to_node_matrix[j];
for (size_t r = 0; r < cell_nodes.size(); ++r) {
m_Fjr(j, r) = Ajr(j, r) * (uj[j] - ur[cell_nodes[r]]) + pj[j] * Cjr(j, r);
}
});
}
void
inverse(const NodeValue<const Rdd>& A, NodeValue<Rdd>& inv_A) const
{
parallel_for(
m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) { inv_A[r] = ::inverse(A[r]); });
}
PUGS_INLINE
void
computeExplicitFluxes(const CellValue<const double>& rhoj,
const CellValue<const Rd>& uj,
const CellValue<const double>& pj,
const CellValue<const double>& cj,
const NodeValuePerCell<const Rd>& Cjr,
const NodeValuePerCell<const double>& ljr,
const NodeValuePerCell<const Rd>& njr)
{
const CellValue<const double> rhocj = computeRhoCj(rhoj, cj);
computeAjr(rhocj, Cjr, ljr, njr);
NodeValuePerCell<const Rdd> Ajr = m_Ajr;
this->computeAr(Ajr);
this->computeBr(m_Ajr, Cjr, uj, pj);
this->applyBoundaryConditions();
synchronize(m_Ar);
synchronize(m_br);
NodeValue<Rd>& ur = m_ur;
ur = computeUr(m_Ar, m_br);
computeFjr(m_Ajr, ur, Cjr, uj, pj);
}
NodeValue<Rd> m_br;
NodeValuePerCell<Rdd> m_Ajr;
NodeValue<Rdd> m_Ar;
NodeValue<Rdd> m_inv_Ar;
NodeValuePerCell<Rd> m_Fjr;
NodeValue<Rd> m_ur;
CellValue<double> m_rhocj;
CellValue<double> m_Vj_over_cj;
public:
AcousticSolver(std::shared_ptr<const MeshType> p_mesh, const std::vector<BoundaryConditionHandler>& bc_list)
: m_mesh(p_mesh),
m_connectivity(m_mesh->connectivity()),
m_boundary_condition_list(bc_list),
m_br(m_connectivity),
m_Ajr(m_connectivity),
m_Ar(m_connectivity),
m_inv_Ar(m_connectivity),
m_Fjr(m_connectivity),
m_ur(m_connectivity),
m_rhocj(m_connectivity),
m_Vj_over_cj(m_connectivity)
{
;
}
PUGS_INLINE
double
acoustic_dt(const CellValue<const double>& Vj, const CellValue<const double>& cj) const
{
MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(*m_mesh);
const NodeValuePerCell<const double>& ljr = mesh_data.ljr();
const auto& cell_to_node_matrix = m_mesh->connectivity().cellToNodeMatrix();
parallel_for(
m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
const auto& cell_nodes = cell_to_node_matrix[j];
double S = 0;
for (size_t r = 0; r < cell_nodes.size(); ++r) {
S += ljr(j, r);
}
m_Vj_over_cj[j] = 2 * Vj[j] / (S * cj[j]);
});
return min(m_Vj_over_cj);
}
[[nodiscard]] std::shared_ptr<const MeshType>
computeNextStep(double dt, UnknownsType& unknowns)
{
CellValue<double>& rhoj = unknowns.rhoj();
CellValue<Rd>& uj = unknowns.uj();
CellValue<double>& Ej = unknowns.Ej();
CellValue<double>& ej = unknowns.ej();
CellValue<double>& pj = unknowns.pj();
CellValue<double>& cj = unknowns.cj();
MeshData<Dimension>& mesh_data = MeshDataManager::instance().getMeshData(*m_mesh);
const CellValue<const double> Vj = mesh_data.Vj();
const NodeValuePerCell<const Rd> Cjr = mesh_data.Cjr();
const NodeValuePerCell<const double> ljr = mesh_data.ljr();
const NodeValuePerCell<const Rd> njr = mesh_data.njr();
computeExplicitFluxes(rhoj, uj, pj, cj, Cjr, ljr, njr);
const NodeValuePerCell<Rd>& Fjr = m_Fjr;
const NodeValue<const Rd> ur = m_ur;
const auto& cell_to_node_matrix = m_mesh->connectivity().cellToNodeMatrix();
const CellValue<const double> inv_mj = unknowns.invMj();
parallel_for(
m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
const auto& cell_nodes = cell_to_node_matrix[j];
Rd momentum_fluxes = zero;
double energy_fluxes = 0;
for (size_t R = 0; R < cell_nodes.size(); ++R) {
const NodeId r = cell_nodes[R];
momentum_fluxes += Fjr(j, R);
energy_fluxes += (Fjr(j, R), ur[r]);
}
uj[j] -= (dt * inv_mj[j]) * momentum_fluxes;
Ej[j] -= (dt * inv_mj[j]) * energy_fluxes;
});
parallel_for(
m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { ej[j] = Ej[j] - 0.5 * (uj[j], uj[j]); });
NodeValue<Rd> new_xr = copy(m_mesh->xr());
parallel_for(
m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) { new_xr[r] += dt * ur[r]; });
m_mesh = std::make_shared<MeshType>(m_mesh->shared_connectivity(), new_xr);
CellValue<const double> new_Vj = MeshDataManager::instance().getMeshData(*m_mesh).Vj();
const CellValue<const double> mj = unknowns.mj();
parallel_for(
m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { rhoj[j] = mj[j] / new_Vj[j]; });
return m_mesh;
}
};
#endif // ACOUSTIC_SOLVER_HPP