Skip to content
Snippets Groups Projects
Select Git revision
  • a626af8e6dc9a296114f0b66c7ae6b11d232ad18
  • develop default protected
  • feature/gmsh-reader
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • feature/escobar-smoother
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

test_Polynomial.cpp

Blame
  • test_Polynomial.cpp 4.47 KiB
    #include <catch2/catch_test_macros.hpp>
    
    #include <Kokkos_Core.hpp>
    
    #include <utils/PugsAssert.hpp>
    #include <utils/Types.hpp>
    
    #include <algebra/TinyMatrix.hpp>
    #include <analysis/Polynomial.hpp>
    
    // Instantiate to ensure full coverage is performed
    template class Polynomial<0>;
    template class Polynomial<1>;
    template class Polynomial<2>;
    template class Polynomial<3>;
    template class Polynomial<4>;
    template class Polynomial<5>;
    
    // clazy:excludeall=non-pod-global-static
    
    TEST_CASE("Polynomial", "[analysis]")
    {
      SECTION("construction")
      {
        REQUIRE_NOTHROW(Polynomial<2>(2, 3, 4));
      }
    
      SECTION("degree")
      {
        Polynomial<2> P(2, 3, 4);
        REQUIRE(P.degree() == 2);
      }
    
      SECTION("equality")
      {
        Polynomial<2> P(2, 3, 4);
        Polynomial<2> Q(2, 3, 4);
        Polynomial<2> S(2, 3, 5);
    
        REQUIRE(P == Q);
        REQUIRE(P != S);
      }
    
      SECTION("addition")
      {
        Polynomial<2> P(2, 3, 4);
        Polynomial<2> Q(-1, -3, 2);
        Polynomial<2> S(1, 0, 6);
        Polynomial<3> T(0, 3, 1, -2);
        Polynomial<3> U(2, 6, 5, -2);
        REQUIRE(S == (P + Q));
        REQUIRE((T + P) == U);
      }
    
      SECTION("opposed")
      {
        Polynomial<2> P(2, 3, 4);
        Polynomial<2> Q = -P;
        REQUIRE(Q == Polynomial<2>(-2, -3, -4));
      }
    
      SECTION("difference")
      {
        Polynomial<2> P(2, 3, 4);
        Polynomial<2> Q(3, 4, 5);
        Polynomial<2> D(-1, -1, -1);
        REQUIRE(D == (P - Q));
        Polynomial<3> R(2, 3, 4, 1);
        REQUIRE(D == (P - Q));
        REQUIRE((P - R) == Polynomial<3>{0, 0, 0, -1});
        R -= P;
        REQUIRE(R == Polynomial<3>(0, 0, 0, 1));
      }
    
      SECTION("product_by_scalar")
      {
        Polynomial<2> P(2, 3, 4);
        Polynomial<2> M(6, 9, 12);
        REQUIRE(M == (P * 3));
        REQUIRE(M == (3 * P));
      }
    
      SECTION("product")
      {
        Polynomial<2> P(2, 3, 4);
        Polynomial<3> Q(1, 2, -1, 1);
        Polynomial<4> R;
        Polynomial<5> S;
        R = P;
        S = P;
        S *= Q;
        REQUIRE(Polynomial<5>(2, 7, 8, 7, -1, 4) == (P * Q));
        REQUIRE(Polynomial<5>(2, 7, 8, 7, -1, 4) == S);
        // REQUIRE_THROWS_AS(R *= Q, AssertError);
      }
    
      SECTION("divide")
      {
        Polynomial<2> P(1, 0, 1);
        Polynomial<1> Q(0, 1);
        Polynomial<1> Q1(0, 1);
    
        Polynomial<2> R;
        Polynomial<2> S;
        REQUIRE(P.realDegree() == 2);
        REQUIRE(Q.realDegree() == 1);
        REQUIRE(Q1.realDegree() == 1);
    
        divide(P, Q1, R, S);
        REQUIRE(Polynomial<2>{1, 0, 0} == S);
        REQUIRE(Polynomial<2>{0, 1, 0} == R);
      }
    
      SECTION("evaluation")
      {
        Polynomial<2> P(2, -3, 4);
        REQUIRE(P(3) == 29);
      }
    
      SECTION("primitive")
      {
        Polynomial<2> P(2, -3, 4);
        TinyVector<4> coefs = zero;
        Polynomial<3> Q(coefs);
        Q = primitive(P);
        Polynomial<3> R(0, 2, -3. / 2, 4. / 3);
        REQUIRE(Q == R);
      }
    
      SECTION("integrate")
      {
        Polynomial<2> P(2, -3, 3);
        double xinf   = -1;
        double xsup   = 1;
        double result = integrate(P, xinf, xsup);
        REQUIRE(result == 6);
        result = symmetricIntegrate(P, 2);
        REQUIRE(result == 24);
      }
    
      SECTION("derivative")
      {
        Polynomial<2> P(2, -3, 3);
        Polynomial<1> Q = derivative(P);
        REQUIRE(Q == Polynomial<1>(-3, 6));
    
        Polynomial<0> P2(3);
    
        Polynomial<0> R(0);
        REQUIRE(derivative(P2) == R);
      }
    
      SECTION("affectation")
      {
        Polynomial<2> Q(2, -3, 3);
        Polynomial<4> R(2, -3, 3, 0, 0);
        Polynomial<4> P(0, 1, 2, 3, 3);
        P = Q;
        REQUIRE(P == R);
      }
    
      SECTION("affectation addition")
      {
        Polynomial<2> Q(2, -3, 3);
        Polynomial<4> R(2, -2, 5, 3, 3);
        Polynomial<4> P(0, 1, 2, 3, 3);
        P += Q;
        REQUIRE(P == R);
      }
    
      SECTION("power")
      {
        Polynomial<2> P(2, -3, 3);
        Polynomial<4> R(4, -12, 21, -18, 9);
        Polynomial<1> Q(0, 2);
        Polynomial<2> S = Q.pow<2>(2);
        REQUIRE(P.pow<2>(2) == R);
        REQUIRE(S == Polynomial<2>(0, 0, 4));
      }
    
      SECTION("composition")
      {
        Polynomial<2> P(2, -3, 3);
        Polynomial<1> Q(0, 2);
        Polynomial<2> R(2, -1, 3);
        Polynomial<2> S(1, 2, 2);
        REQUIRE(P.compose(Q) == Polynomial<2>(2, -6, 12));
        REQUIRE(P.compose2(Q) == Polynomial<2>(2, -6, 12));
        REQUIRE(R(S) == Polynomial<4>(4, 10, 22, 24, 12));
      }
    
      SECTION("Lagrange polynomial")
      {
        Polynomial<1> S(0.5, -0.5);
        Polynomial<1> Q;
        Q = lagrangePolynomial<1>(TinyVector<2>{-1, 1}, 0);
        REQUIRE(S == Q);
        Polynomial<2> P(0, -0.5, 0.5);
        Polynomial<2> R;
        R = lagrangePolynomial<2>(TinyVector<3>{-1, 0, 1}, 0);
        REQUIRE(R == P);
        const std::array<Polynomial<2>, 3> basis = lagrangeBasis(TinyVector<3>{-1, 0, 1});
        REQUIRE(lagrangeToCanonical(TinyVector<3>{1, 0, 1}, basis) == Polynomial<2>(TinyVector<3>{0, 0, 1}));
      }
    }