Select Git revision
ConnectivityDispatcher.cpp
-
Stéphane Del Pino authoredStéphane Del Pino authored
NoSplitting.hpp 12.21 KiB
#ifndef NO_SPLITTING_HPP
#define NO_SPLITTING_HPP
// --- INCLUSION fichiers headers ---
#include <Kokkos_Core.hpp>
#include <rang.hpp>
#include <BlockPerfectGas.hpp>
#include <TinyVector.hpp>
#include <TinyMatrix.hpp>
#include <Mesh.hpp>
#include <MeshData.hpp>
#include <FiniteVolumesEulerUnknowns.hpp>
// ---------------------------------
// Creation classe NoSplitting
template<typename MeshData>
class NoSplitting
{
typedef typename MeshData::MeshType MeshType;
typedef FiniteVolumesEulerUnknowns<MeshData> UnknownsType;
MeshData& m_mesh_data;
MeshType& m_mesh;
const typename MeshType::Connectivity& m_connectivity;
constexpr static size_t dimension = MeshType::dimension;
typedef TinyVector<dimension> Rd;
typedef TinyMatrix<dimension> Rdd;
private:
struct ReduceMin
{
private:
const Kokkos::View<const double*> x_;
public:
typedef Kokkos::View<const double*>::non_const_value_type value_type;
ReduceMin(const Kokkos::View<const double*>& x) : x_ (x) {}
typedef Kokkos::View<const double*>::size_type size_type;
KOKKOS_INLINE_FUNCTION void
operator() (const size_type i, value_type& update) const
{
if (x_(i) < update) {
update = x_(i);
}
}
KOKKOS_INLINE_FUNCTION void
join (volatile value_type& dst,
const volatile value_type& src) const
{
if (src < dst) {
dst = src;
}
}
KOKKOS_INLINE_FUNCTION void
init (value_type& dst) const
{ // The identity under max is -Inf.
dst= Kokkos::reduction_identity<value_type>::min();
}
};
/*
// ----
KOKKOS_INLINE_FUNCTION
const Kokkos::View<const double*>
computePj(const Kokkos::View<const double*>& pj,
const Kokkos::View<const double*>& kj,
const Kokkos::View<const Rd*>& uj)
{
const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_connectivity.cellNbNodes();
const Kokkos::View<const double*>& Vj = m_mesh_data.Vj();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
double new_p = 0.;
double sum = 0;
for (int m=0; m<cell_nb_nodes(j); ++m) {
sum += uj[cell_nodes(j,m)][0];
}
new_p = pj(j) - kj(j)*sum/Vj(j);
pj(j) = new_p;
});
return pj;
}
// ----
*/
KOKKOS_INLINE_FUNCTION
const Kokkos::View<const double*>
computeRhoCj(const Kokkos::View<const double*>& rhoj,
const Kokkos::View<const double*>& cj)
{
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
m_rhocj[j] = rhoj[j]*cj[j];
});
return m_rhocj;
}
KOKKOS_INLINE_FUNCTION
const Kokkos::View<const Rdd**>
computeAjr(const Kokkos::View<const double*>& rhocj,
const Kokkos::View<const Rd**>& Cjr) {
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_connectivity.cellNbNodes();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
for (int r=0; r<cell_nb_nodes[j]; ++r) {
m_Ajr(j,r) = tensorProduct(rhocj(j)*Cjr(j,r), Cjr(j,r));
}
});
return m_Ajr;
}
KOKKOS_INLINE_FUNCTION
const Kokkos::View<const Rdd*>
computeAr(const Kokkos::View<const Rdd**>& Ajr) {
const Kokkos::View<const unsigned int**> node_cells = m_connectivity.nodeCells();
const Kokkos::View<const unsigned short**> node_cell_local_node = m_connectivity.nodeCellLocalNode();
const Kokkos::View<const unsigned short*> node_nb_cells = m_connectivity.nodeNbCells();
Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
Rdd sum = zero;
for (int j=0; j<node_nb_cells(r); ++j) {
const int J = node_cells(r,j);
const int R = node_cell_local_node(r,j);
sum += Ajr(J,R);
}
m_Ar(r) = sum;
});
return m_Ar;
}
KOKKOS_INLINE_FUNCTION
const Kokkos::View<const Rd*>
computeBr(const Kokkos::View<const Rdd**>& Ajr,
const Kokkos::View<const Rd**>& Cjr,
const Kokkos::View<const Rd*>& uj,
const Kokkos::View<const double*>& PTj,
const double t) {
const Kokkos::View<const unsigned int**>& node_cells = m_connectivity.nodeCells();
const Kokkos::View<const unsigned short**>& node_cell_local_node = m_connectivity.nodeCellLocalNode();
const Kokkos::View<const unsigned short*>& node_nb_cells = m_connectivity.nodeNbCells();
Kokkos::View<Rd*> xr = m_mesh.xr();
Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
Rd& br = m_br(r);
br = zero;
for (int j=0; j<node_nb_cells(r); ++j) {
const int J = node_cells(r,j);
const int R = node_cell_local_node(r,j);
br += Ajr(J,R)*uj(J) + PTj(J)*Cjr(J,R);
}
});
return m_br;
}
Kokkos::View<Rd*>
computeUr(const Kokkos::View<const Rdd*>& Ar,
const Kokkos::View<const Rd*>& br,
const double& t) {
inverse(Ar, m_inv_Ar);
const Kokkos::View<const Rdd*> invAr = m_inv_Ar;
Kokkos::View<Rd*> xr = m_mesh.xr();
Kokkos::View<Rd*> x0 = m_mesh.x0();
Kokkos::View<Rd*> xmax = m_mesh.xmax();
Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
m_ur[r]=invAr(r)*br(r);
});
m_ur[0]=zero;
m_ur[m_mesh.numberOfNodes()-1]=zero;
//m_ur[0] = x0;
//m_ur[m_mesh.numberOfNodes()-1] = xmax[0];
// CL Kidder
/*
double h = std::sqrt(1. - (t*t)/(50./9.));
m_ur[0]=(-t/((50./9.)-t*t))*h*x0[0];
m_ur[m_mesh.numberOfNodes()-1] = (-t/((50./9.)-t*t))*h*xmax[0];
*/
return m_ur;
}
Kokkos::View<Rd**>
computeFjr(const Kokkos::View<const Rdd**>& Ajr,
const Kokkos::View<const Rd*>& ur,
const Kokkos::View<const Rd**>& Cjr,
const Kokkos::View<const Rd*>& uj,
const Kokkos::View<const double*>& PTj) {
const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_connectivity.cellNbNodes();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
for (int r=0; r<cell_nb_nodes[j]; ++r) {
m_Fjr(j,r) = Ajr(j,r)*(uj(j)-ur(cell_nodes(j,r)))+PTj(j)*Cjr(j,r);
}
});
return m_Fjr;
}
// Calcul la liste des inverses d'une liste de matrices (pour
// l'instant seulement $R^{1\times 1}$)
void inverse(const Kokkos::View<const Rdd*>& A,
Kokkos::View<Rdd*>& inv_A) const {
Kokkos::parallel_for(A.size(), KOKKOS_LAMBDA(const int& r) {
inv_A(r) = Rdd{1./(A(r)(0,0))};
});
}
// Calcul la liste des inverses d'une liste de reels
void inverse(const Kokkos::View<const double*>& x,
Kokkos::View<double*>& inv_x) const {
Kokkos::parallel_for(x.size(), KOKKOS_LAMBDA(const int& r) {
inv_x(r) = 1./x(r);
});
}
// Enchaine les operations pour calculer les flux (Fjr et ur) pour
// pouvoir derouler le schema
KOKKOS_INLINE_FUNCTION
void computeExplicitFluxes(const Kokkos::View<const Rd*>& xr,
const Kokkos::View<const Rd*>& xj,
const Kokkos::View<const double*>& kj,
const Kokkos::View<const double*>& rhoj,
const Kokkos::View<const Rd*>& uj,
const Kokkos::View<const double*>& PTj,
const Kokkos::View<const double*>& cj,
const Kokkos::View<const double*>& Vj,
const Kokkos::View<const Rd**>& Cjr,
const double& t) {
const Kokkos::View<const double*> rhocj = computeRhoCj(rhoj, cj);
const Kokkos::View<const Rdd**> Ajr = computeAjr(rhocj, Cjr);
const Kokkos::View<const Rdd*> Ar = computeAr(Ajr);
const Kokkos::View<const Rd*> br = computeBr(Ajr, Cjr, uj, PTj, t);
Kokkos::View<Rd*> ur = m_ur;
Kokkos::View<Rd**> Fjr = m_Fjr;
ur = computeUr(Ar, br, t);
Fjr = computeFjr(Ajr, ur, Cjr, uj, PTj);
}
Kokkos::View<Rd*> m_br;
Kokkos::View<Rdd**> m_Ajr;
Kokkos::View<Rdd*> m_Ar;
Kokkos::View<Rdd*> m_inv_Ar;
Kokkos::View<Rd**> m_Fjr;
Kokkos::View<Rd*> m_ur;
Kokkos::View<double*> m_rhocj;
Kokkos::View<double*> m_PTj;
Kokkos::View<double*> m_Vj_over_cj;
public:
NoSplitting(MeshData& mesh_data,
UnknownsType& unknowns)
: m_mesh_data(mesh_data),
m_mesh(mesh_data.mesh()),
m_connectivity(m_mesh.connectivity()),
m_br("br", m_mesh.numberOfNodes()),
m_Ajr("Ajr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()),
m_Ar("Ar", m_mesh.numberOfNodes()),
m_inv_Ar("inv_Ar", m_mesh.numberOfNodes()),
m_Fjr("Fjr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()),
m_ur("ur", m_mesh.numberOfNodes()),
m_rhocj("rho_c", m_mesh.numberOfCells()),
m_PTj("PTj", m_mesh.numberOfCells()),
m_Vj_over_cj("Vj_over_cj", m_mesh.numberOfCells())
{
;
}
// Avance la valeur des inconnues pendant un pas de temps dt
void computeNextStep(const double& t, const double& dt,
UnknownsType& unknowns)
{
Kokkos::View<double*> rhoj = unknowns.rhoj();
Kokkos::View<Rd*> uj = unknowns.uj();
Kokkos::View<double*> Ej = unknowns.Ej();
Kokkos::View<double*> ej = unknowns.ej();
Kokkos::View<double*> pj = unknowns.pj();
Kokkos::View<double*> gammaj = unknowns.gammaj();
Kokkos::View<double*> cj = unknowns.cj();
Kokkos::View<double*> kj = unknowns.kj();
Kokkos::View<double*> nuj = unknowns.nuj();
Kokkos::View<double*> PTj = unknowns.PTj();
Kokkos::View<double*> kL = unknowns.kL();
Kokkos::View<double*> kR = unknowns.kR();
Kokkos::View<Rd*> uL = unknowns.uL();
Kokkos::View<Rd*> uR = unknowns.uR();
const Kokkos::View<const Rd*> xj = m_mesh_data.xj();
const Kokkos::View<const double*> Vj = m_mesh_data.Vj();
const Kokkos::View<const double*> Vl = m_mesh_data.Vl();
const Kokkos::View<const Rd**> Cjr = m_mesh_data.Cjr();
Kokkos::View<Rd*> xr = m_mesh.xr();
const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_connectivity.cellNbNodes();
// Calcule les flux
computeExplicitFluxes(xr, xj, kj, rhoj, uj, PTj, cj, Vj, Cjr, t);
const Kokkos::View<const Rd**> Fjr = m_Fjr;
const Kokkos::View<const Rd*> ur = m_ur;
// Mise a jour de la vitesse et de l'energie totale specifique
const Kokkos::View<const double*> inv_mj = unknowns.invMj();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
Rd momentum_fluxes = zero;
double energy_fluxes = 0;
for (int R=0; R<cell_nb_nodes[j]; ++R) {
const int r=cell_nodes(j,R);
momentum_fluxes += Fjr(j,R);
energy_fluxes += (Fjr(j,R), ur[r]);
}
uj[j] -= (dt*inv_mj[j]) * momentum_fluxes;
Ej[j] -= (dt*inv_mj[j]) * energy_fluxes;
// ajout second membre pour kidder (k cst)
//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((kj(j)*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
// ajout second membre pour kidder (k = x)
//uj[j][0] += (dt*inv_mj[j])*Vj(j)*(t/((50./9.)-t*t));
//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
});
// Calcul de e par la formule e = E-0.5 u^2
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
ej[j] = Ej[j] - 0.5 * (uj[j],uj[j]);
});
// deplace le maillage (ses sommets) en utilisant la vitesse
// donnee par le schema
Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r){
xr[r] += dt*ur[r];
});
// met a jour les quantites (geometriques) associees au maillage
m_mesh_data.updateAllData();
// Calcul de rho avec la formule Mj = Vj rhoj
const Kokkos::View<const double*> mj = unknowns.mj();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
rhoj[j] = mj[j]/Vj[j];
});
// Calcul de PT
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
double sum = 0;
double sum1 = 0;
for (int m=0; m<cell_nb_nodes(j); ++m) {
sum += (uj(cell_nodes(j,m)), Cjr(cell_nodes(j,m), m));
sum1 += Vj(cell_nodes(j,m));
}
if (j == 0) {
PTj(j) = pj(j) - kj(j)*(uj[j][0]-uL[0][0])/Vl(0);
//PTj(j) = pj(j) + kj(j)*(t/((50./9.)-t*t));
} else if (j == m_mesh.numberOfCells()-1) {
//PTj(j) = pj(j) + kj(j)*(t/((50./9.)-t*t));
PTj(j) = pj(j) - kj(j)*(uR[0][0]-uj[j][0])/Vl(m_mesh.numberOfFaces()-1);
} else {
PTj(j) = pj(j) - kj(j)*2.*sum/sum1;
}
});
// Mise a jour de k
/*
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
kj(j) = xj[j][0];
});
*/
}
};
#endif // NO_SPLITTING_HPP