Skip to content
Snippets Groups Projects
Select Git revision
  • 983b408a8a5044129d8e888cdd1eb2e5c7a1f925
  • develop default protected
  • feature/gmsh-reader
  • save_clemence
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

NoSplitting.hpp

Blame
  • NoSplitting.hpp 16.19 KiB
    #ifndef NO_SPLITTING_HPP
    #define NO_SPLITTING_HPP
    
    // --- INCLUSION fichiers headers ---
    
    #include <Kokkos_Core.hpp>
    
    #include <rang.hpp>
    #include <BlockPerfectGas.hpp>
    
    #include <TinyVector.hpp>
    #include <TinyMatrix.hpp>
    #include <Mesh.hpp>
    #include <MeshData.hpp>
    #include <FiniteVolumesEulerUnknowns.hpp>
    
    // ---------------------------------
    
    // Creation classe NoSplitting
    
    template<typename MeshData> 
    class NoSplitting 
    {
      typedef typename MeshData::MeshType MeshType; 
      typedef FiniteVolumesEulerUnknowns<MeshData> UnknownsType; 
    
      MeshData& m_mesh_data; 
      MeshType& m_mesh;
      const typename MeshType::Connectivity& m_connectivity;
    
      constexpr static size_t dimension = MeshType::dimension; 
    
      typedef TinyVector<dimension> Rd; 
      typedef TinyMatrix<dimension> Rdd;
    
    private:
    
      struct ReduceMin
      {
      private:
        const Kokkos::View<const double*> x_;
    
      public:
        typedef Kokkos::View<const double*>::non_const_value_type value_type;
    
        ReduceMin(const Kokkos::View<const double*>& x) : x_ (x) {}
    
        typedef Kokkos::View<const double*>::size_type size_type;
        
        KOKKOS_INLINE_FUNCTION void
        operator() (const size_type i, value_type& update) const
        {
          if (x_(i) < update) {
    	update = x_(i);
          }
        }
    
        KOKKOS_INLINE_FUNCTION void
        join (volatile value_type& dst,
    	  const volatile value_type& src) const
        {
          if (src < dst) {
    	dst = src;
          }
        }
    
        KOKKOS_INLINE_FUNCTION void
        init (value_type& dst) const
        { // The identity under max is -Inf.
          dst= Kokkos::reduction_identity<value_type>::min();
        }
      };
    
      KOKKOS_INLINE_FUNCTION
      const Kokkos::View<const double*>
      computeRhoCj(const Kokkos::View<const double*>& kj,
    	       const Kokkos::View<const double*>& Vj,
    	       const Kokkos::View<const double*>& rhoj,
    	       const Kokkos::View<const double*>& cj)
      {
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	//m_rhocj[j] = rhoj[j]*cj[j];
    	m_rhocj[j] = rhoj[j]*cj[j] + kj[j]/Vj[j];
          });
        return m_rhocj;
      }
    
      KOKKOS_INLINE_FUNCTION 
      const Kokkos::View<const Rdd**>
      computeAjr(const Kokkos::View<const double*>& rhocj,
    	     const Kokkos::View<const Rd**>& Cjr) {
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	for (int r=0; r<cell_nb_nodes[j]; ++r) {
    	  m_Ajr(j,r) = tensorProduct(rhocj(j)*Cjr(j,r), Cjr(j,r));
    	}
          });
    
        return m_Ajr;
      }
    
      KOKKOS_INLINE_FUNCTION 
      const Kokkos::View<const Rdd*> 
      computeAr(const Kokkos::View<const Rdd**>& Ajr) {
        const Kokkos::View<const unsigned int**> node_cells = m_connectivity.nodeCells();
        const Kokkos::View<const unsigned short**> node_cell_local_node = m_connectivity.nodeCellLocalNode();
        const Kokkos::View<const unsigned short*> node_nb_cells = m_connectivity.nodeNbCells();
    
        Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
    	Rdd sum = zero;
    	for (int j=0; j<node_nb_cells(r); ++j) {
    	  const int J = node_cells(r,j);
    	  const int R = node_cell_local_node(r,j);
    	  sum += Ajr(J,R);
    	}
    	m_Ar(r) = sum;
          });
    
        return m_Ar;
      }
    
      KOKKOS_INLINE_FUNCTION 
      const Kokkos::View<const Rd*>
      computeBr(const Kokkos::View<const Rdd**>& Ajr,
    	    const Kokkos::View<const Rd**>& Cjr,
    	    const Kokkos::View<const Rd*>& uj,
    	    const Kokkos::View<const double*>& pj,
    	    const double t) {
        const Kokkos::View<const unsigned int**>& node_cells = m_connectivity.nodeCells();
        const Kokkos::View<const unsigned short**>& node_cell_local_node = m_connectivity.nodeCellLocalNode();
        const Kokkos::View<const unsigned short*>& node_nb_cells = m_connectivity.nodeNbCells();
        Kokkos::View<Rd*> xr = m_mesh.xr();
    
        Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
    	Rd& br = m_br(r);
    	br = zero;
    	for (int j=0; j<node_nb_cells(r); ++j) {
    	  const int J = node_cells(r,j);
    	  const int R = node_cell_local_node(r,j);
    	  br += Ajr(J,R)*uj(J) + pj(J)*Cjr(J,R);
    	}
          });
    
        return m_br;
      }
      
      Kokkos::View<Rd*>  
      computeUr(const Kokkos::View<const Rdd*>& Ar,
    	    const Kokkos::View<const Rd*>& br,
    	    const double& t) {
    
        inverse(Ar, m_inv_Ar);
        const Kokkos::View<const Rdd*> invAr = m_inv_Ar;
    
        Kokkos::View<Rd*> xr = m_mesh.xr();
        Kokkos::View<Rd*> x0 = m_mesh.x0();
        Kokkos::View<Rd*> xmax = m_mesh.xmax();
    
        Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
    	m_ur[r]=invAr(r)*br(r);
          });
    
        // --- CL ---
    
        m_ur[0]=zero;
        m_ur[m_mesh.numberOfNodes()-1]=zero;
    
        //m_ur[0] = x0;
        //m_ur[m_mesh.numberOfNodes()-1] = xmax[0];
        
        // CL Kidder
        /*
        double h = std::sqrt(1. - (t*t)/(50./9.));
        m_ur[0]=(-t/((50./9.)-t*t))*h*x0[0];
        m_ur[m_mesh.numberOfNodes()-1] = (-t/((50./9.)-t*t))*h*xmax[0];
        */
        // ---------
        
        return m_ur;
      }
      
      Kokkos::View<Rd**>  
      computeFjr(const Kokkos::View<const Rdd**>& Ajr,
    	     const Kokkos::View<const Rd*>& ur,
    	     const Kokkos::View<const Rd**>& Cjr,
    	     const Kokkos::View<const Rd*>& uj,
    	     const Kokkos::View<const double*>& pj) {
        const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	for (int r=0; r<cell_nb_nodes[j]; ++r) {
    	  m_Fjr(j,r) = Ajr(j,r)*(uj(j)-ur(cell_nodes(j,r)))+pj(j)*Cjr(j,r);
    	}
          });
    
        return m_Fjr;
      }
    
      // Calcul la liste des inverses d'une liste de matrices (pour
      // l'instant seulement $R^{1\times 1}$)
      void inverse(const Kokkos::View<const Rdd*>& A,
    	       Kokkos::View<Rdd*>& inv_A) const {
        Kokkos::parallel_for(A.size(), KOKKOS_LAMBDA(const int& r) {
    	inv_A(r) = Rdd{1./(A(r)(0,0))};
          });
      }
    
      // Calcul la liste des inverses d'une liste de reels
      void inverse(const Kokkos::View<const double*>& x,
    	       Kokkos::View<double*>& inv_x) const {
        Kokkos::parallel_for(x.size(), KOKKOS_LAMBDA(const int& r) {
    	inv_x(r) = 1./x(r);
          });
      }
    
      // Enchaine les operations pour calculer les flux (Fjr et ur) pour
      // pouvoir derouler le schema
      KOKKOS_INLINE_FUNCTION
      void computeExplicitFluxes(const Kokkos::View<const Rd*>& xr,
    			     const Kokkos::View<const Rd*>& xj,
    			     const Kokkos::View<const double*>& rhoj,
    			     const Kokkos::View<const double*>& kj,
    			     const Kokkos::View<const Rd*>& uj,
    			     const Kokkos::View<const double*>& pj,
    			     const Kokkos::View<const double*>& cj,
    			     const Kokkos::View<const double*>& Vj,
    			     const Kokkos::View<const Rd**>& Cjr,
    			     const double& t) {
        const Kokkos::View<const double*> rhocj  = computeRhoCj(kj, Vj, rhoj, cj);
        const Kokkos::View<const Rdd**> Ajr = computeAjr(rhocj, Cjr);
    
        const Kokkos::View<const Rdd*> Ar = computeAr(Ajr);
        const Kokkos::View<const Rd*> br = computeBr(Ajr, Cjr, uj, pj, t);
    
        Kokkos::View<Rd*> ur = m_ur;
        Kokkos::View<Rd**> Fjr = m_Fjr;
        ur = computeUr(Ar, br, t);
        Fjr = computeFjr(Ajr, ur, Cjr, uj, pj);
      }
    
      Kokkos::View<Rd*> m_br;
      Kokkos::View<Rdd**> m_Ajr;
      Kokkos::View<Rdd*> m_Ar;
      Kokkos::View<Rdd*> m_inv_Ar;
      Kokkos::View<Rd**> m_Fjr;
      Kokkos::View<Rd*> m_ur;
      Kokkos::View<Rd*> m_ur0;
      Kokkos::View<double*> m_rhocj;
      Kokkos::View<double*> m_Vj_over_cj;
    
    public:
      NoSplitting(MeshData& mesh_data,
    		 UnknownsType& unknowns)
        : m_mesh_data(mesh_data),
          m_mesh(mesh_data.mesh()),
          m_connectivity(m_mesh.connectivity()),
          m_br("br", m_mesh.numberOfNodes()),
          m_Ajr("Ajr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()),
          m_Ar("Ar", m_mesh.numberOfNodes()),
          m_inv_Ar("inv_Ar", m_mesh.numberOfNodes()),
          m_Fjr("Fjr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()),
          m_ur("ur", m_mesh.numberOfNodes()),
          m_ur0("ur0", m_mesh.numberOfNodes()),
          m_rhocj("rho_c", m_mesh.numberOfCells()),
        m_Vj_over_cj("Vj_over_cj", m_mesh.numberOfCells())
      {
        ;
      }
      
      // Calcule une evaluation du pas de temps verifiant une CFL du type
      // c*dt/dx<1 (c modifie)
      KOKKOS_INLINE_FUNCTION
      double nosplitting_dt(const Kokkos::View<const double*>& Vj,
    			const Kokkos::View<const double*>& cj,
    			const Kokkos::View<const double*>& rhoj,
    			const Kokkos::View<const double*>& kj) const {
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	m_Vj_over_cj[j] = Vj[j]/(cj[j]+kj[j]/(rhoj[j]*Vj[j]));
          });
    
        double dt = std::numeric_limits<double>::max();
        Kokkos::parallel_reduce(m_mesh.numberOfCells(), ReduceMin(m_Vj_over_cj), dt);
    
        return dt;
      }
      
    
      // Avance la valeur des inconnues pendant un pas de temps dt
      void computeNextStep(const double& t, const double& dt,
    		       UnknownsType& unknowns)
      {
        Kokkos::View<double*> rhoj = unknowns.rhoj();
        Kokkos::View<Rd*> uj = unknowns.uj();
        Kokkos::View<double*> Ej = unknowns.Ej();
    
        Kokkos::View<double*> ej = unknowns.ej();
        Kokkos::View<double*> pj = unknowns.pj();
        Kokkos::View<double*> gammaj = unknowns.gammaj();
        Kokkos::View<double*> cj = unknowns.cj();
        Kokkos::View<double*> kj = unknowns.kj();
        Kokkos::View<double*> nuj = unknowns.nuj();
        Kokkos::View<double*> PTj = unknowns.PTj();
        Kokkos::View<double*> kL = unknowns.kL();
        Kokkos::View<double*> kR = unknowns.kR();
        Kokkos::View<Rd*> uL = unknowns.uL();
        Kokkos::View<Rd*> uR = unknowns.uR();
    
        const Kokkos::View<const Rd*> xj = m_mesh_data.xj();
        const Kokkos::View<const double*> Vj = m_mesh_data.Vj();
        const Kokkos::View<const double*> Vl = m_mesh_data.Vl();
        const Kokkos::View<const Rd**> Cjr = m_mesh_data.Cjr();
        Kokkos::View<Rd*> xr = m_mesh.xr();
    
        const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
    
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
    
        const Kokkos::View<const Rd**> Fjr = m_Fjr;
        const Kokkos::View<const Rd*> ur = m_ur;
        const Kokkos::View<const Rd*> ur0 = m_ur0;
    
        /*
        // Calcul de PT (1er essai)
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	double sum = 0;
    	double sum1 = 0;
    	for (int m=0; m<cell_nb_nodes(j); ++m) {
    	  sum += (uj(cell_nodes(j,m)), Cjr(cell_nodes(j,m), m));
    	  sum1 += Vj(cell_nodes(j,m));
    	}
    	if (j == 0) {
    	  //PTj(j) = pj(j) - kj(j)*(uj[j][0]-uL[0][0])/Vl(0);
    	  PTj(j) = pj(j) + kj(j)*(t/((50./9.)-t*t));
    	} else if (j == m_mesh.numberOfCells()-1) {
    	  PTj(j) = pj(j) + kj(j)*(t/((50./9.)-t*t));
    	  //PTj(j) = pj(j) - kj(j)*(uR[0][0]-uj[j][0])/Vl(m_mesh.numberOfFaces()-1);
    	} else {
    	  PTj(j) = pj(j) - kj(j)*2.*sum/sum1;
    	}
    	
          });
        */    
        /*
        // Calcul de PT (2eme essai, symetrisation) 
        const Kokkos::View<const unsigned int**>& face_cells = m_connectivity.faceCells();
        const Kokkos::View<const unsigned short*> face_nb_cells
          = m_connectivity.faceNbCells();
        const Kokkos::View<const unsigned int**>& cell_faces = m_connectivity.cellFaces();
        const Kokkos::View<const unsigned short*> cell_nb_faces
          = m_connectivity.cellNbFaces();
        
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    
    	std::vector<double> stock(2);
    	for (int l=0; l<cell_nb_faces(j); ++l) {
    	  double sum = 0;
    	  double sum2 = 0;
    	  int k = cell_faces(j,l);
    	  for (int i=0; i<face_nb_cells(k); ++i) {
    	    int cell_here = face_cells(k,i);
    	    sum += (1./Vj(cell_here))*uj[cell_here][0];
    	    sum2 += 1./Vj(cell_here);
    	  } 
    	  stock[l] = sum/sum2;
    	}
    	if (j == 0) {
    	  PTj(j) = pj(j) - kj(j)*(uj[j][0]-uL[0][0])/Vl(0);
    	  //PTj(j) = pj(j) + kj(j)*(t/((50./9.)-t*t));
    	} else if (j == m_mesh.numberOfCells()-1) {
    	  //PTj(j) = pj(j) + kj(j)*(t/((50./9.)-t*t));
    	  PTj(j) = pj(j) - kj(j)*(uR[0][0]-uj[j][0])/Vl(m_mesh.numberOfFaces()-1);
    	} else {
    	  PTj(j) = pj(j) - kj(j)*(stock[1]-stock[0])/Vj(j);
    	}
    	
          });
        
        
        std::ofstream fout2("pj");
        fout2.precision(15);
        for (size_t j=0; j<m_mesh.numberOfCells(); ++j) {
          fout2 << xj[j][0] << ' ' << pj[j] << '\n'; 
        } 
        std::ofstream fout3("pTj");
        fout3.precision(15);
        for (size_t j=0; j<m_mesh.numberOfCells(); ++j) {
          fout3 << xj[j][0] << ' ' << PTj[j] << '\n'; 
        } 
        */
        // Calcul de PT (3eme essai, avec uR du solveur de Riemann)
        for (int itconv=0; itconv<100; ++itconv){
    
        // computeExplicitFluxes(xr, xj, rhoj, kj, uj, pj, cj, Vj, Cjr, t);
        
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	
     	// if (j == 0) {
    	//   PTj(j) = pj(j) - kj(j)*(uj[j][0]-uL[0][0])/Vl(0);
    	//   //PTj(j) = pj(j) + kj(j)*(t/((50./9.)-t*t));
    	//   //PTj(j) = pj(j) - kj(j)*(ur[cell_nodes(j,1)][0])/Vj(j);
    	// } else if (j == m_mesh.numberOfCells()-1) {
    	//   PTj(j) = pj(j) - kj(j)*(uR[0][0]-uj[j][0])/Vl(m_mesh.numberOfFaces()-1);
    	//   //PTj(j) = pj(j) + kj(j)*(t/((50./9.)-t*t));
    	//   //PTj(j) = pj(j) - kj(j)*(-ur[cell_nodes(j,0)][0])/Vj(j);
    	// } else {
    	  double sum = 0;
    	  for (int k=0; k<cell_nb_nodes(j); ++k) {
    	    int node_here = cell_nodes(j,k);
    	    sum += (ur(node_here), Cjr(j,k));
    	  }
    	  PTj(j) = pj(j) - kj(j)*sum/Vj(j);
    	// }
    
          });
        // jespere que ca copie, ca...
        for (int inode=0;inode<m_mesh.numberOfNodes();++inode){
          m_ur0[inode][0]=m_ur[inode][0];
        }
        // m_ur0=m_ur;
        // Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
        //   });
        
        
        // Calcule les flux
        computeExplicitFluxes(xr, xj, rhoj, kj, uj, PTj, cj, Vj, Cjr, t);
        for (int inode=0;inode<m_mesh.numberOfNodes();++inode){
          m_ur[inode][0]=0.7*m_ur[inode][0]+0.3*m_ur0[inode][0];
        }
        double sum=0.;
        for (int inode=0;inode<m_mesh.numberOfNodes();++inode){
          sum+=std::abs(m_ur0[inode][0]-m_ur[inode][0]);
        }
        sum/=double(m_mesh.numberOfNodes());
        std::cout << " it " << itconv << " sum " << sum << std::endl;
        if(sum<1.e-6) break;
        }
        // Mise a jour de la vitesse et de l'energie totale specifique
        const Kokkos::View<const double*> inv_mj = unknowns.invMj();
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	Rd momentum_fluxes = zero;
    	double energy_fluxes = 0;
    	for (int R=0; R<cell_nb_nodes[j]; ++R) {
    	  const int r=cell_nodes(j,R);
    	  momentum_fluxes +=  Fjr(j,R);
    	  energy_fluxes   += (Fjr(j,R), ur[r]);
    	}
    	uj[j] -= (dt*inv_mj[j]) * momentum_fluxes;
    	Ej[j] -= (dt*inv_mj[j]) * energy_fluxes;
    
    	// ajout second membre pour kidder (k cst)
    	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((kj(j)*t*t)/(((50./9.)-t*t)*((50./9.)-t*t)));
    	// ajout second membre pour kidder (k = x)
    	//uj[j][0] += (dt*inv_mj[j])*Vj(j)*(t/((50./9.)-t*t)); 
    	//Ej[j] -= (dt*inv_mj[j])*Vj(j)*((2.*xj[j][0]*t*t)/(((50./9.)-t*t)*((50./9.)-t*t))); 
          });
    
        // Calcul de e par la formule e = E-0.5 u^2
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	ej[j] = Ej[j] - 0.5 * (uj[j],uj[j]);
          });
    
        // deplace le maillage (ses sommets) en utilisant la vitesse
        // donnee par le schema
        Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r){
    	xr[r] += dt*ur[r];
          });
    
        // met a jour les quantites (geometriques) associees au maillage
        m_mesh_data.updateAllData();
    
        // Calcul de rho avec la formule Mj = Vj rhoj
        const Kokkos::View<const double*> mj = unknowns.mj();
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	rhoj[j] = mj[j]/Vj[j];
          });
        
        // gnuplot output for vitesse
        std::ofstream fout("uj");
        fout.precision(15);
        for (size_t j=0; j<m_mesh.numberOfCells(); ++j) {
          fout << xj[j][0] << ' ' << uj[j][0] << '\n'; 
        } 
        
        // gnuplot output for vitesse riemann
        std::ofstream fout1("ur202");
        fout1.precision(15);
        for (size_t j=0; j<m_mesh.numberOfNodes(); ++j) {
          fout1 << xr[j][0] << ' ' << ur[j][0] << '\n'; 
        } 
    
        // Mise a jour de k
        /*
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	kj(j) = xj[j][0];
          });
        */
        
        // stocke la vitesse pour la prochaine iteration
        // Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r){
        // 	ur0[r][0] = ur[r][0];
        //   });
        /*
        // gnuplot output for vitesse riemann
        std::ofstream fout1("ur0");
        fou.precision(15);
        for (size_t j=0; j<m_mesh.numberOfNodes(); ++j) {
          fou << xr[j][0] << ' ' << ur0[j][0] << '\n'; 
        } 
        */
      }
    };
    
    
    
    #endif // NO_SPLITTING_HPP