Select Git revision
-
Fanny CHOPOT authoredFanny CHOPOT authored
main.cpp 25.05 KiB
#include <iostream>
#include <fstream>
#include <iomanip>
#include <Kokkos_Core.hpp>
#include <RevisionInfo.hpp>
#include <rang.hpp>
#include <FPEManager.hpp>
#include <SignalManager.hpp>
#include <ConsoleManager.hpp>
#include <string>
#include <cmath>
// #include <RawKokkosAcousticSolver.hpp>
// #include <MeshLessAcousticSolver.hpp>
// #include <AcousticSolverClass.hpp>
// #include <AcousticSolverTest.hpp>
#include <Connectivity1D.hpp>
#include <Mesh.hpp>
#include <AcousticSolver.hpp>
#include <FiniteVolumesDiffusion.hpp>
#include <TinyVector.hpp>
#include <TinyMatrix.hpp>
#include <CLI/CLI.hpp>
#include <cassert>
#include <limits>
#include <map>
int main(int argc, char *argv[])
{
long unsigned number = 10;
{
CLI::App app{"Pastis help"};
app.add_option("number,-n,--number", number, "Number of cells");//->required();
int threads=-1;
app.add_option("--threads", threads, "Number of Kokkos threads")->check(CLI::Range(1,std::numeric_limits<decltype(threads)>::max()));
std::string colorize="auto";
app.add_set("--colorize", colorize, {"auto", "yes", "no"}, "Colorize console output", true);
bool disable_fpe = false;
app.add_flag("--no-fpe", disable_fpe, "Do not trap floating point exceptions");
bool disable_signals = false;
app.add_flag("--no-signal", disable_signals, "Do not catches signals");
std::string pause_on_error="auto";
app.add_set("--pause-on-error", pause_on_error, {"auto", "yes", "no"}, "Pause for debugging on unexpected error", true);
std::atexit([](){std::cout << rang::style::reset;});
try {
app.parse(argc, argv);
} catch (const CLI::ParseError &e) {
return app.exit(e);
}
ConsoleManager::init(colorize);
FPEManager::init(not disable_fpe);
SignalManager::setPauseForDebug(pause_on_error);
SignalManager::init(not disable_signals);
}
std::cout << "Code version: "
<< rang::style::bold << RevisionInfo::version() << rang::style::reset << '\n';
std::cout << "-------------------- "
<< rang::fg::green
<< "git info"
<< rang::fg::reset
<<" -------------------------"
<< '\n';
std::cout << "tag: " << rang::fg::reset
<< rang::style::bold << RevisionInfo::gitTag() << rang::style::reset << '\n';
std::cout << "HEAD: " << rang::style::bold << RevisionInfo::gitHead() << rang::style::reset << '\n';
std::cout << "hash: " << rang::style::bold << RevisionInfo::gitHash() << rang::style::reset << " (";
if (RevisionInfo::gitIsClean()) {
std::cout << rang::fgB::green << "clean" << rang::fg::reset;
} else {
std::cout << rang::fgB::red << "dirty" << rang::fg::reset;
}
std::cout << ")\n";
std::cout << "-------------------------------------------------------\n";
Kokkos::initialize(argc, argv);
Kokkos::DefaultExecutionSpace::print_configuration(std::cout);
std::map<std::string, double> method_cost_map;
// { // Basic function based acoustic solver
// Kokkos::Timer timer;
// timer.reset();
// RawKokkos::AcousticSolver(number);
// method_cost_map["RawKokkos"] = timer.seconds();
// }
// { // class for acoustic solver (mesh less)
// Kokkos::Timer timer;
// timer.reset();
// MeshLessAcousticSolver acoustic_solver(number);
// method_cost_map["MeshLessAcousticSolver"] = timer.seconds();
// }
// { // class for acoustic solver
// Kokkos::Timer timer;
// timer.reset();
// AcousticSolverClass acoustic_solver(number);
// method_cost_map["AcousticSolverClass"] = timer.seconds();
// }
// { // class for acoustic solver test
// Kokkos::Timer timer;
// timer.reset();
// AcousticSolverTest acoustic_solver(number);
// method_cost_map["AcousticSolverTest"] = timer.seconds();
// }
{
Kokkos::Timer timer;
timer.reset();
Connectivity1D connectivity(number);
typedef Mesh<Connectivity1D> MeshType;
typedef MeshData<MeshType> MeshDataType;
typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType;
MeshType mesh(connectivity);
MeshDataType mesh_data(mesh);
UnknownsType unknowns(mesh_data);
unknowns.initializeSod();
AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns);
FiniteVolumesDiffusion<MeshDataType> finite_volumes_diffusion(mesh_data, unknowns);
typedef TinyVector<MeshType::dimension> Rd;
const Kokkos::View<const double*> Vj = mesh_data.Vj();
const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();
const double tmax=0.2;
double t=0.;
int itermax=std::numeric_limits<int>::max();
int iteration=0;
Kokkos::View<double*> rhoj = unknowns.rhoj();
Kokkos::View<double*> ej = unknowns.ej();
Kokkos::View<double*> pj = unknowns.pj();
Kokkos::View<double*> gammaj = unknowns.gammaj();
Kokkos::View<double*> cj = unknowns.cj();
Kokkos::View<double*> kj = unknowns.kj();
Kokkos::View<double*> nuj = unknowns.nuj();
Kokkos::View<Rd*> uj = unknowns.uj();
BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
Kokkos::View<double*> nuL = unknowns.nuL();
Kokkos::View<double*> nuR = unknowns.nuR();
Kokkos::View<double*> kL = unknowns.kL();
Kokkos::View<double*> kR = unknowns.kR();
double c = 0.;
c = finite_volumes_diffusion.conservatif(unknowns);
const Kokkos::View<const Rd*> xj = mesh_data.xj();
int size = 3000;
std::vector<std::vector<double>> x(size, std::vector<double>(mesh.numberOfCells()));
std::vector<double> tempo(size);
int i = 0;
/*
// Ecriture des valeurs initiales dans un fichier
const Kokkos::View<const Rd*> xj = mesh_data.xj();
const Kokkos::View<const Rd*> xr = mesh.xr();
// rho
std::ofstream fout1("inter1", std::ios::trunc);
fout1.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout1 << std::fixed << xj[j][0] << ' ' << std::fixed << rhoj[j] << '\n';
}
fout1.close();
// u
std::ofstream fout2("inter2", std::ios::trunc);
fout2.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout2 << std::fixed << xj[j][0] << ' ' << std::fixed << uj[j][0] << '\n';
}
fout2.close();
// e
std::ofstream fout3("inter3", std::ios::trunc);
fout3.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout3 << std::fixed << xj[j][0] << ' ' << std::fixed << ej[j] << '\n';
}
fout3.close();
// p
std::ofstream fout4("inter4", std::ios::trunc);
fout4.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout4 << std::fixed << xj[j][0] << ' ' << std::fixed << pj[j] << '\n';
}
fout4.close();
// S
std::ofstream fout5("inter5", std::ios::trunc);
fout5.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout5 << std::fixed << xj[j][0] << ' ' << std::fixed << std::log(pj[j]*std::pow(rhoj[j],-gammaj[j])) << '\n';
}
fout5.close();
// derivee de u
std::ofstream fout6("inter6", std::ios::trunc);
fout6.precision(15);
// en 1D : mesh.numberOfNodes() = mesh.numberOfCells() - 1
for (size_t j=0; j<mesh.numberOfNodes()-2; ++j) {
fout6 << std::fixed << xj[j][0] << ' ' << std::fixed << (uj[j+1][0]-uj[j][0])/(xr[j+2][0]-xr[j+1][0]) << '\n';
}
fout6.close();
// derivee de p
std::ofstream fout7("inter7", std::ios::trunc);
fout7.precision(15);
for (size_t j=0; j<mesh.numberOfNodes()-2; ++j) {
fout7 << std::fixed << xj[j][0] << ' ' << std::fixed << (pj[j+1]-pj[j])/(xr[j+2][0]-xr[j+1][0]) << '\n';
}
fout7.close();
// derivee de rho
std::ofstream fout8("inter8", std::ios::trunc);
fout8.precision(15);
for (size_t j=0; j<mesh.numberOfNodes()-2; ++j) {
fout8 << std::fixed << xj[j][0] << ' ' << std::fixed << (rhoj[j+1]-rhoj[j])/(xr[j+2][0]-xr[j+1][0]) << '\n';
}
fout8.close();
// terme baroclyne
std::ofstream fout9("inter9", std::ios::trunc);
fout9.precision(15);
for (size_t j=0; j<mesh.numberOfNodes()-2; ++j) {
fout9 << std::fixed << xj[j][0] << ' ' << std::fixed << (((rhoj[j+1]-rhoj[j])/(xr[j+2][0]-xr[j+1][0]))*((pj[j+1]-pj[j])/(xr[j+2][0]-xr[j+1][0])))/(rhoj[j]*rhoj[j]) << '\n';
}
fout9.close();
// Fichier temps
std::ofstream tempo("temps");
tempo.precision(5);
tempo << std::fixed << t << '\n';
tempo.close();
// Fichier k indicateur
std::ofstream diff("diffinter");
diff.precision(5);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
//diff << std::fixed << xj[j][0] << ' ' << std::fixed << kj[j] << '\n';
if (kj[j]>0.) {
diff << std::fixed << xj[j][0] << ' ' << std::fixed << 4. << '\n';
} else {
diff << std::fixed << xj[j][0] << ' ' << std::fixed << -0.1 << '\n';
}
}
diff.close();
*/
while((t<tmax) and (iteration<itermax)) {
/*
// ETAPE 1 DU SPLITTING - EULER
double dt_euler = 0.9*acoustic_solver.acoustic_dt(Vj, cj);
if (t+dt_euler > tmax) {
dt_euler = tmax-t;
}
acoustic_solver.computeNextStep(t,dt_euler, unknowns);
t += dt_euler;
// ETAPE 2 DU SPLITTING - DIFFUSION
double dt_diff = 0.9*finite_volumes_diffusion.diffusion_dt(rhoj, kj,nuj, cj);
double t_diff = t-dt_euler;
if (dt_euler <= dt_diff) {
dt_diff = dt_euler;
finite_volumes_diffusion.computeNextStep(t_diff, dt_diff, unknowns);
} else {
while (t > t_diff) {
dt_diff = 0.9*finite_volumes_diffusion.diffusion_dt(rhoj, kj, nuj,cj);
if (t_diff+dt_diff > t) {
dt_diff = t-t_diff;
}
finite_volumes_diffusion.computeNextStep(t_diff, dt_diff, unknowns);
t_diff += dt_diff;
}
}
*/
// DIFFUSION PURE
double dt = 0.9*finite_volumes_diffusion.diffusion_dt(rhoj,kj,nuj,cj,nuL,nuR,kL,kR);
if (t+dt > tmax) {
dt = tmax-t;
}
finite_volumes_diffusion.computeNextStep(t, dt, unknowns);
t += dt;
block_eos.updatePandCFromRhoE();
++iteration;
std::cout << "temps t : " << t << std::endl;
/*
// ECRITURE DANS UN FICHIER
if ((std::fmod(t,0.01) < 0.0001) or (t == tmax)) {
std::string ligne;
// rho
std::ifstream fint1("inter1");
std::ofstream fout1("film_rho", std::ios::trunc);
fout1.precision(15);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(fint1, ligne);
fout1 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << rhoj[j] << '\n';
}
fint1.close();
fout1.close();
std::ifstream rint1("film_rho");
std::ofstream rout1("inter1", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(rint1, ligne);
rout1 << ligne << '\n';
}
rint1.close();
rout1.close();
// u
std::ifstream fint2("inter2");
std::ofstream fout2("film_u", std::ios::trunc);
fout2.precision(15);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(fint2, ligne);
fout2 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << uj[j][0] << '\n';
}
fint2.close();
fout2.close();
std::ifstream rint2("film_u");
std::ofstream rout2("inter2", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(rint2, ligne);
rout2 << ligne << '\n';
}
rint2.close();
rout2.close();
// e
std::ifstream fint3("inter3");
std::ofstream fout3("film_e", std::ios::trunc);
fout3.precision(15);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(fint3, ligne);
fout3 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << ej[j] << '\n';
}
fint3.close();
fout3.close();
std::ifstream rint3("film_e");
std::ofstream rout3("inter3", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(rint3, ligne);
rout3 << ligne << '\n';
}
rint3.close();
rout3.close();
// p
std::ifstream fint4("inter4");
std::ofstream fout4("film_p", std::ios::trunc);
fout4.precision(15);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(fint4, ligne);
fout4 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << pj[j] << '\n';
}
fint4.close();
fout4.close();
std::ifstream rint4("film_p");
std::ofstream rout4("inter4", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(rint4, ligne);
rout4 << ligne << '\n';
}
rint4.close();
rout4.close();
// S
std::ifstream fint5("inter5");
std::ofstream fout5("film_S", std::ios::trunc);
fout5.precision(15);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(fint5, ligne);
fout5 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << std::log(pj[j]*std::pow(rhoj[j],-gammaj[j])) << '\n';
}
fint5.close();
fout5.close();
std::ifstream rint5("film_S");
std::ofstream rout5("inter5", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(rint5, ligne);
rout5 << ligne << '\n';
}
rint5.close();
rout5.close();
// derivee de u
std::ifstream fint6("inter6");
std::ofstream fout6("film_du", std::ios::trunc);
fout6.precision(15);
for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) {
getline(fint6, ligne);
fout6 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << (uj[j+1][0]-uj[j][0])/(xr[j+2][0]-xr[j+1][0]) << '\n';
}
fint6.close();
fout6.close();
std::ifstream rint6("film_du");
std::ofstream rout6("inter6", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) {
getline(rint6, ligne);
rout6 << ligne << '\n';
}
rint6.close();
rout6.close();
// derivee de p
std::ifstream fint7("inter7");
std::ofstream fout7("film_dp", std::ios::trunc);
fout7.precision(15);
for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) {
getline(fint7, ligne);
fout7 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << (pj[j+1]-pj[j])/(xr[j+2][0]-xr[j+1][0]) << '\n';
}
fint7.close();
fout7.close();
std::ifstream rint7("film_dp");
std::ofstream rout7("inter7", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) {
getline(rint7, ligne);
rout7 << ligne << '\n';
}
rint7.close();
rout7.close();
// derivee de rho
std::ifstream fint8("inter8");
std::ofstream fout8("film_drho", std::ios::trunc);
fout8.precision(15);
for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) {
getline(fint8, ligne);
fout8 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << (rhoj[j+1]-rhoj[j])/(xr[j+2][0]-xr[j+1][0]) << '\n';
}
fint8.close();
fout8.close();
std::ifstream rint8("film_drho");
std::ofstream rout8("inter8", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) {
getline(rint8, ligne);
rout8 << ligne << '\n';
}
rint8.close();
rout8.close();
// terme baroclyne
std::ifstream fint9("inter9");
std::ofstream fout9("film_baro", std::ios::trunc);
fout9.precision(15);
for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) {
getline(fint9, ligne);
fout9 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << (((rhoj[j+1]-rhoj[j])/(xr[j+2][0]-xr[j+1][0]))*((pj[j+1]-pj[j])/(xr[j+2][0]-xr[j+1][0])))/(rhoj[j]*rhoj[j])<< '\n';
}
fint9.close();
fout9.close();
std::ifstream rint9("film_baro");
std::ofstream rout9("inter9", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) {
getline(rint9, ligne);
rout9 << ligne << '\n';
}
rint9.close();
rout9.close();
// Fichier temps
std::ofstream tempo("temps", std::ios::app);
tempo.precision(5);
tempo << std::fixed << t << '\n';
tempo.close();
// Fichier k indicateur
std::ifstream diffint("diffinter");
std::ofstream diffout("k", std::ios::trunc);
diffout.precision(5);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(diffint, ligne);
//diffout << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << kj[j] << '\n';
if (kj[j]>0.) {
diffout << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << 4. << '\n';
} else {
diffout << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << -0.1 << '\n';
}
}
diffint.close();
diffout.close();
std::ifstream riffint("k");
std::ofstream riffout("diffinter", std::ios::trunc);
for (size_t j = 0; j<mesh.numberOfCells(); ++j) {
getline(riffint, ligne);
riffout << ligne << '\n';
}
riffint.close();
riffout.close();
}
*/
// ENTROPY TEST
//finite_volumes_diffusion.entropie(unknowns);
/*
// STOCKAGE COORDONNES ET TEMPS
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
x[i][j] = xj[j][0];
}
tempo[i] = t;
i = i + 1;
*/
}
std::cout << "i = " << i << std::endl;
std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
<< ": " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
// CREATION FICHIER x = f(t)
/*
std::ofstream fout("cara");
fout.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
for (size_t k=0; k<i; ++k) {
fout << tempo[k] << ' ' << x[k][j] << '\n';
}
fout << ' ' << '\n';
fout << ' ' << '\n';
}
*/
/*
std::ofstream fout("cara1");
fout.precision(15);
for (int j=0; j<mesh.numberOfCells(); ++j) {
if (j%10 == 0) {
for (int k=0; k<i; ++k) {
if ( (k%10 == 0) or (k == i-1) ) {
fout << tempo[k] << ' ' << x[k][j] << '\n';
}
}
fout << ' ' << '\n';
fout << ' ' << '\n';
}
}
*/
/*
double error1 = 0.;
error1 = finite_volumes_diffusion.error_L2_rho(unknowns, tmax);
std::cout << "* " << rang::style::underline << "Erreur L2 rho" << rang::style::reset
<< ": " << rang::fgB::green << error1 << rang::fg::reset << " \n";
double error2 = 0.;
error2 = finite_volumes_diffusion.error_Linf_rho(unknowns, tmax);
std::cout << "* " << rang::style::underline << "Erreur L infini rho" << rang::style::reset
<< ": " << rang::fgB::green << error2 << rang::fg::reset << " \n";
*/
double err0 = 0.;
err0 = finite_volumes_diffusion.error_L1_u(unknowns, tmax);
std::cout << "* " << rang::style::underline << "Erreur L1 u" << rang::style::reset
<< ": " << rang::fgB::green << err0 << rang::fg::reset << " \n";
double error = 0.;
error = finite_volumes_diffusion.error_L2_u(unknowns, tmax);
std::cout << "* " << rang::style::underline << "Erreur L2 u" << rang::style::reset
<< ": " << rang::fgB::green << error << rang::fg::reset << " \n";
double error4 = 0.;
error4 = finite_volumes_diffusion.error_Linf_u(unknowns, tmax);
std::cout << "* " << rang::style::underline << "Erreur L infini u" << rang::style::reset
<< ": " << rang::fgB::green << error4 << rang::fg::reset << " \n";
double err1 = 0.;
err1 = finite_volumes_diffusion.error_L1_E(unknowns, tmax);
std::cout << "* " << rang::style::underline << "Erreur L1 E" << rang::style::reset
<< ": " << rang::fgB::green << err1 << rang::fg::reset << " \n";
double error3 = 0.;
error3 = finite_volumes_diffusion.error_L2_E(unknowns,tmax);
std::cout << "* " << rang::style::underline << "Erreur L2 E" << rang::style::reset
<< ": " << rang::fgB::green << error3 << rang::fg::reset << " \n";
double error5 = 0.;
error5 = finite_volumes_diffusion.error_Linf_E(unknowns, tmax);
std::cout << "* " << rang::style::underline << "Erreur L infini E" << rang::style::reset
<< ": " << rang::fgB::green << error5 << rang::fg::reset << " \n";
std::cout << "* " << rang::style::underline << "Resultat conservativite rho E temps = 0" << rang::style::reset
<< ": " << rang::fgB::green << c << rang::fg::reset << " \n";
double cons = 0.;
cons = finite_volumes_diffusion.conservatif(unknowns);
std::cout << "* " << rang::style::underline << "Resultat conservativite rho E" << rang::style::reset
<< ": " << rang::fgB::green << cons << rang::fg::reset << " \n";
//method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
method_cost_map["FiniteVolumesDiffusionWithMesh"] = timer.seconds();
{ // gnuplot output for density
const Kokkos::View<const Rd*> xj = mesh_data.xj();
const Kokkos::View<const double*> rhoj = unknowns.rhoj();
double h = std::sqrt(1. - (tmax*tmax)/(50./9.));
std::ofstream fout("rho");
fout.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
//fout << xj[j][0] << ' ' << rhoj[j] << ' ' << std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h << '\n'; // kidder
fout << xj[j][0] << ' ' << rhoj[j] << '\n';
}
}
{ // gnuplot output for vitesse
const Kokkos::View<const Rd*> xj = mesh_data.xj();
const Kokkos::View<const Rd*> uj = unknowns.uj();
double pi = 4.*std::atan(1.);
std::ofstream fout("u");
fout.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout << xj[j][0] << ' ' << uj[j][0] << ' ' << std::sin(pi*xj[j][0])*std::exp(-2.*pi*pi*0.2) <<'\n'; //cas k constant
//fout << xj[j][0] << ' ' << uj[j][0] << ' ' << std::sin(pi*xj[j][0])*std::exp(-tmax) <<'\n'; // cas k non constant
//fout << xj[j][0] << ' ' << uj[j][0] << ' ' << -(xj[j][0]*tmax)/((50./9.)-tmax*tmax) << '\n'; // kidder
//fout << xj[j][0] << ' ' << uj[j][0] << ' ' << xj[j][0] << std::endl;
//fout << xj[j][0] << ' ' << uj[j][0] << '\n';
}
}
{ // gnuplot output for energy
const Kokkos::View<const Rd*> xj = mesh_data.xj();
const Kokkos::View<const double*> Ej = unknowns.Ej();
double pi = 4.*std::atan(1.);
double h = std::sqrt(1. - (tmax*tmax)/(50./9.));
std::ofstream fout("E");
fout.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout << xj[j][0] << ' ' << Ej[j] << ' ' << (-(std::cos(pi*xj[j][0])*std::cos(pi*xj[j][0]))+(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0])))*0.5*(std::exp(-4.*pi*pi*0.2)-1.) + 2. <<'\n'; // cas k constant
//fout << xj[j][0] << ' ' << Ej[j] << ' ' << ((xj[j][0]*pi*pi*0.5)*(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0]) - std::cos(xj[j][0]*pi)*std::cos(pi*xj[j][0])) - pi*0.5*std::sin(pi*xj[j][0])*std::cos(pi*xj[j][0]))*(std::exp(-2.*tmax)-1.) + 2. <<'\n' ; // cas k non constant
//fout << xj[j][0] << ' ' << Ej[j] << ' ' << (std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h)*(std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h) + (-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*(-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*0.5 << '\n'; // kidder
//fout << xj[j][0] << ' ' << Ej[j] << ' ' << xj[j][0]*xj[j][0]*0.5 + 2.*xj[j][0] + tmax + 1. << std::endl;
//fout << xj[j][0] << ' ' << Ej[j] << '\n';
}
}
/*
{ // gnuplot output for entropy (gaz parfait en prenant cv = 1))
const Kokkos::View<const Rd*> xj = mesh_data.xj();
const Kokkos::View<const double*> rhoj = unknowns.rhoj();
const Kokkos::View<const double*> pj = unknowns.pj();
const Kokkos::View<const double*> gammaj = unknowns.gammaj();
const Kokkos::View<const double*> S0 = unknowns.S0();
std::ofstream fout("S2");
fout.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout << xj[j][0] << ' ' << std::log(pj[j]*std::pow(rhoj[j],-gammaj[j])) << '\n';
}
}
*/
/*
{ // gnuplot output for k
const Kokkos::View<const Rd*> xj = mesh_data.xj();
const Kokkos::View<const double*> kj = unknowns.kj();
std::ofstream fout("k");
fout.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
if (kj[j]>0.) {
fout << xj[j][0] << ' ' << 5. << '\n';
} else {
fout << xj[j][0] << ' ' << 0. << '\n';
}
}
}
*/
/*
{ // gnuplot output for vitesse
const Kokkos::View<const Rd*> xj = mesh_data.xj();
const Kokkos::View<const double*> rhoj = unknowns.rhoj();
const Kokkos::View<const double*> pj = unknowns.pj();
const Kokkos::View<const double*> gammaj = unknowns.gammaj();
const Kokkos::View<const Rd*> uj = unknowns.uj();
std::ofstream fout("vitesse");
fout.precision(15);
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout << xj[j][0] << ' ' << uj[j][0] + std::sqrt((gammaj[j]*pj[j])/rhoj[j]) << '\n';
}
}
*/
}
Kokkos::finalize();
std::cout << "----------------------\n";
std::string::size_type size=0;
for (const auto& method_cost : method_cost_map) {
size = std::max(size, method_cost.first.size());
}
for (const auto& method_cost : method_cost_map) {
std::cout << "* ["
<< rang::fgB::cyan
<< std::setw(size) << std::left
<< method_cost.first
<< rang::fg::reset
<< "] Execution time: "
<< rang::style::bold
<< method_cost.second
<< rang::style::reset << '\n';
}
return 0;
}