Skip to content
Snippets Groups Projects
Select Git revision
  • 7f0c726420b375fd1b211ae759235f1e620fb8e1
  • develop default protected
  • feature/gmsh-reader
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • feature/escobar-smoother
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

EigenvalueSolver.cpp

Blame
  • AcousticSolver.hpp 11.42 KiB
    #ifndef ACOUSTIC_SOLVER_HPP
    #define ACOUSTIC_SOLVER_HPP
    
    // --- INCLUSION fichiers headers ---
    
    #include <Kokkos_Core.hpp>
    
    #include <rang.hpp>
    #include <BlockPerfectGas.hpp>
    
    #include <TinyVector.hpp>
    #include <TinyMatrix.hpp>
    #include <Mesh.hpp>
    #include <MeshData.hpp>
    #include <FiniteVolumesEulerUnknowns.hpp>
    
    // ---------------------------------
    
    // Creation classe AcousticSolver 
    
    template<typename MeshData> // MeshData est le type generique des donnees (geometriques) attachees a un maillage
    class AcousticSolver 
    {
      typedef typename MeshData::MeshType MeshType; // de type du maillage
      typedef FiniteVolumesEulerUnknowns<MeshData> UnknownsType; // type des inconnues
    
      MeshData& m_mesh_data; //reference vers les donnees attachees du maillage
      MeshType& m_mesh; // reference vers le maillage
      const typename MeshType::Connectivity& m_connectivity; // references vers la connectivite
    
      constexpr static size_t dimension = MeshType::dimension; // dimension du maillage (connue a la compilation)
    
      typedef TinyVector<dimension> Rd; // type de petits vecteurs (de dimension MeshType::dimension)
      typedef TinyMatrix<dimension> Rdd; // type de petites matrices
    
    private:
    
      // -------
    
     // Sert a calculer les reductions (en gros calculer le min sur des
     // vecteurs en parallele) Ne pas regarder plus comment ca marche.
      struct ReduceMin
      {
      private:
        const Kokkos::View<const double*> x_;
    
      public:
        typedef Kokkos::View<const double*>::non_const_value_type value_type;
    
        ReduceMin(const Kokkos::View<const double*>& x) : x_ (x) {}
    
        typedef Kokkos::View<const double*>::size_type size_type;
        
        KOKKOS_INLINE_FUNCTION void
        operator() (const size_type i, value_type& update) const
        {
          if (x_(i) < update) {
    	update = x_(i);
          }
        }
    
        KOKKOS_INLINE_FUNCTION void
        join (volatile value_type& dst,
    	  const volatile value_type& src) const
        {
          if (src < dst) {
    	dst = src;
          }
        }
    
        KOKKOS_INLINE_FUNCTION void
        init (value_type& dst) const
        { // The identity under max is -Inf.
          dst= Kokkos::reduction_identity<value_type>::min();
        }
      };
    
      // -------
      
      KOKKOS_INLINE_FUNCTION // Fonction qui calcule (rho c)_j
      const Kokkos::View<const double*>
      computeRhoCj(const Kokkos::View<const double*>& rhoj,
    	       const Kokkos::View<const double*>& cj)
      {
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	m_rhocj[j] = rhoj[j]*cj[j];
          });
        return m_rhocj;
      }
    
      KOKKOS_INLINE_FUNCTION // Fonction qui calcule A_jr
      const Kokkos::View<const Rdd**>
      computeAjr(const Kokkos::View<const double*>& rhocj,
    	     const Kokkos::View<const Rd**>& Cjr) {
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	for (int r=0; r<cell_nb_nodes[j]; ++r) {
    	  m_Ajr(j,r) = tensorProduct(rhocj(j)*Cjr(j,r), Cjr(j,r));
    	}
          });
    
        return m_Ajr;
      }
    
      KOKKOS_INLINE_FUNCTION // Fonction qui calcule A_r (la matrice locale au sommet r)
      const Kokkos::View<const Rdd*> 
      computeAr(const Kokkos::View<const Rdd**>& Ajr) {
        const Kokkos::View<const unsigned int**> node_cells = m_connectivity.nodeCells();
        const Kokkos::View<const unsigned short**> node_cell_local_node = m_connectivity.nodeCellLocalNode();
        const Kokkos::View<const unsigned short*> node_nb_cells = m_connectivity.nodeNbCells();
    
        Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
    	Rdd sum = zero;
    	for (int j=0; j<node_nb_cells(r); ++j) {
    	  const int J = node_cells(r,j);
    	  const int R = node_cell_local_node(r,j);
    	  sum += Ajr(J,R);
    	}
    	m_Ar(r) = sum;
          });
    
        return m_Ar;
      }
    
      KOKKOS_INLINE_FUNCTION // Fonction qui calcule la somme b_r (le second membre au sommet r)
      const Kokkos::View<const Rd*>
      computeBr(const Kokkos::View<const Rdd**>& Ajr,
    	    const Kokkos::View<const Rd**>& Cjr,
    	    const Kokkos::View<const Rd*>& uj,
    	    const Kokkos::View<const double*>& pj) {
        const Kokkos::View<const unsigned int**>& node_cells = m_connectivity.nodeCells();
        const Kokkos::View<const unsigned short**>& node_cell_local_node = m_connectivity.nodeCellLocalNode();
        const Kokkos::View<const unsigned short*>& node_nb_cells = m_connectivity.nodeNbCells();
    
        Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
    	Rd& br = m_br(r);
    	br = zero;
    	for (int j=0; j<node_nb_cells(r); ++j) {
    	  const int J = node_cells(r,j);
    	  const int R = node_cell_local_node(r,j);
    	  br += Ajr(J,R)*uj(J) + pj(J)*Cjr(J,R);
    	}
          });
    
        return m_br;
      }
    
      /*
      Kokkos::View<Rd*> // calcule u_r (vitesse au sommet du maillage et flux de vitesse)
      computeUr(const Kokkos::View<const Rdd*>& Ar,
    	    const Kokkos::View<const Rd*>& br) {
        inverse(Ar, m_inv_Ar);
        const Kokkos::View<const Rdd*> invAr = m_inv_Ar;
        Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
    	m_ur[r]=invAr(r)*br(r);
          });
        m_ur[0]=zero;
        m_ur[m_mesh.numberOfNodes()-1]=zero;
    
        return m_ur;
      }
      */
      
      Kokkos::View<Rd*> 
      computeUr(const Kokkos::View<const Rdd*>& Ar,
    	    const Kokkos::View<const Rd*>& br,
    	    const double& t) {
    
        inverse(Ar, m_inv_Ar);
        const Kokkos::View<const Rdd*> invAr = m_inv_Ar;
    
        Kokkos::View<Rd*> xr = m_mesh.xr();
    
        Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r) {
    	m_ur[r]=invAr(r)*br(r);
          });
    
        // Conditions aux limites dependant du temps
        m_ur[0]=(-t/((50./9.)-t*t))*xr[0];
        m_ur[m_mesh.numberOfNodes()-1] = (-t/((50./9.)-t*t))*xr[m_mesh.numberOfNodes()-1];
    
        return m_ur;
      }
      
      Kokkos::View<Rd**>  // Fonction qui calcule F_jr
      computeFjr(const Kokkos::View<const Rdd**>& Ajr,
    	     const Kokkos::View<const Rd*>& ur,
    	     const Kokkos::View<const Rd**>& Cjr,
    	     const Kokkos::View<const Rd*>& uj,
    	     const Kokkos::View<const double*>& pj) {
        const Kokkos::View<const unsigned int**>& cell_nodes = m_connectivity.cellNodes();
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	for (int r=0; r<cell_nb_nodes[j]; ++r) {
    	  m_Fjr(j,r) = Ajr(j,r)*(uj(j)-ur(cell_nodes(j,r)))+pj(j)*Cjr(j,r);
    	}
          });
    
        return m_Fjr;
      }
    
      // Calcul la liste des inverses d'une liste de matrices (pour
      // l'instant seulement $R^{1\times 1}$)
      void inverse(const Kokkos::View<const Rdd*>& A,
    	       Kokkos::View<Rdd*>& inv_A) const {
        Kokkos::parallel_for(A.size(), KOKKOS_LAMBDA(const int& r) {
    	inv_A(r) = Rdd{1./(A(r)(0,0))};
          });
      }
    
      // Calcul la liste des inverses d'une liste de reels
      void inverse(const Kokkos::View<const double*>& x,
    	       Kokkos::View<double*>& inv_x) const {
        Kokkos::parallel_for(x.size(), KOKKOS_LAMBDA(const int& r) {
    	inv_x(r) = 1./x(r);
          });
      }
    
      // Enchaine les operations pour calculer les flux (Fjr et ur) pour
      // pouvoir derouler le schema
      KOKKOS_INLINE_FUNCTION
      void computeExplicitFluxes(const Kokkos::View<const Rd*>& xr,
    			     const Kokkos::View<const Rd*>& xj,
    			     const Kokkos::View<const double*>& rhoj,
    			     const Kokkos::View<const Rd*>& uj,
    			     const Kokkos::View<const double*>& pj,
    			     const Kokkos::View<const double*>& cj,
    			     const Kokkos::View<const double*>& Vj,
    			     const Kokkos::View<const Rd**>& Cjr,
    			     const double& t) {
        const Kokkos::View<const double*> rhocj  = computeRhoCj(rhoj, cj);
        const Kokkos::View<const Rdd**> Ajr = computeAjr(rhocj, Cjr);
    
        const Kokkos::View<const Rdd*> Ar = computeAr(Ajr);
        const Kokkos::View<const Rd*> br = computeBr(Ajr, Cjr, uj, pj);
    
        Kokkos::View<Rd*> ur = m_ur;
        Kokkos::View<Rd**> Fjr = m_Fjr;
        //ur  = computeUr(Ar, br);
        ur = computeUr(Ar, br, t);
        Fjr = computeFjr(Ajr, ur, Cjr, uj, pj);
      }
    
      Kokkos::View<Rd*> m_br;
      Kokkos::View<Rdd**> m_Ajr;
      Kokkos::View<Rdd*> m_Ar;
      Kokkos::View<Rdd*> m_inv_Ar;
      Kokkos::View<Rd**> m_Fjr;
      Kokkos::View<Rd*> m_ur;
      Kokkos::View<double*> m_rhocj;
      Kokkos::View<double*> m_Vj_over_cj;
    
    public:
      AcousticSolver(MeshData& mesh_data,
    		 UnknownsType& unknowns)
        : m_mesh_data(mesh_data),
          m_mesh(mesh_data.mesh()),
          m_connectivity(m_mesh.connectivity()),
          m_br("br", m_mesh.numberOfNodes()),
          m_Ajr("Ajr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()),
          m_Ar("Ar", m_mesh.numberOfNodes()),
          m_inv_Ar("inv_Ar", m_mesh.numberOfNodes()),
          m_Fjr("Fjr", m_mesh.numberOfCells(), m_connectivity.maxNbNodePerCell()),
          m_ur("ur", m_mesh.numberOfNodes()),
          m_rhocj("rho_c", m_mesh.numberOfCells()),
          m_Vj_over_cj("Vj_over_cj", m_mesh.numberOfCells())
      {
        ;
      }
    
      // Calcule une evaluation du pas de temps verifiant une CFL du type
      // c*dt/dx<1. Utilise la reduction definie dans la structure
      // ReduceMin. Ici, dx_j=V_j
      KOKKOS_INLINE_FUNCTION
      double acoustic_dt(const Kokkos::View<const double*>& Vj,
    		     const Kokkos::View<const double*>& cj) const {
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	m_Vj_over_cj[j] = Vj[j]/cj[j];
          });
    
        double dt = std::numeric_limits<double>::max();
        Kokkos::parallel_reduce(m_mesh.numberOfCells(), ReduceMin(m_Vj_over_cj), dt);
    
        return dt;
      }
    
      // Avance la valeur des inconnues pendant un pas de temps dt
      void computeNextStep(const double& t, const double& dt,
    		       UnknownsType& unknowns)
      {
        Kokkos::View<double*> rhoj = unknowns.rhoj();
        Kokkos::View<Rd*> uj = unknowns.uj();
        Kokkos::View<double*> Ej = unknowns.Ej();
    
        Kokkos::View<double*> ej = unknowns.ej();
        Kokkos::View<double*> pj = unknowns.pj();
        Kokkos::View<double*> gammaj = unknowns.gammaj();
        Kokkos::View<double*> cj = unknowns.cj();
    
        const Kokkos::View<const Rd*> xj = m_mesh_data.xj();
        const Kokkos::View<const double*> Vj = m_mesh_data.Vj();
        const Kokkos::View<const Rd**> Cjr = m_mesh_data.Cjr();
        Kokkos::View<Rd*> xr = m_mesh.xr();
    
        // Calcule les flux
        computeExplicitFluxes(xr, xj, rhoj, uj, pj, cj, Vj, Cjr, t);
    
        const Kokkos::View<const Rd**> Fjr = m_Fjr;
        const Kokkos::View<const Rd*> ur = m_ur;
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_connectivity.cellNbNodes();
        const Kokkos::View<const unsigned int**>& cell_nodes
          = m_connectivity.cellNodes();
    
        // Mise a jour de la vitesse et de l'energie totale specifique
        const Kokkos::View<const double*> inv_mj = unknowns.invMj();
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	Rd momentum_fluxes = zero;
    	double energy_fluxes = 0;
    	for (int R=0; R<cell_nb_nodes[j]; ++R) {
    	  const int r=cell_nodes(j,R);
    	  momentum_fluxes +=  Fjr(j,R);
    	  energy_fluxes   += (Fjr(j,R), ur[r]);
    	}
    	uj[j] -= (dt*inv_mj[j]) * momentum_fluxes;
    	Ej[j] -= (dt*inv_mj[j]) * energy_fluxes;
          });
    
        // Calcul de e par la formule e = E-0.5 u^2
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	ej[j] = Ej[j] - 0.5 * (uj[j],uj[j]);
          });
    
        // deplace le maillage (ses sommets) en utilisant la vitesse
        // donnee par le schema
        Kokkos::parallel_for(m_mesh.numberOfNodes(), KOKKOS_LAMBDA(const int& r){
    	xr[r] += dt*ur[r];
          });
    
        // met a jour les quantites (geometriques) associees au maillage
        m_mesh_data.updateAllData();
    
        // Calcul de rho avec la formule Mj = Vj rhoj
        const Kokkos::View<const double*> mj = unknowns.mj();
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	rhoj[j] = mj[j]/Vj[j];
          });
      }
    };
    
    #endif // ACOUSTIC_SOLVER_HPP