Select Git revision
test_DiscreteFunctionVectorInterpoler.cpp
AcousticSolver.hpp 10.69 KiB
#ifndef ACOUSTIC_SOLVER_HPP
#define ACOUSTIC_SOLVER_HPP
#include <rang.hpp>
#include <ArrayUtils.hpp>
#include <BlockPerfectGas.hpp>
#include <PastisAssert.hpp>
#include <TinyVector.hpp>
#include <TinyMatrix.hpp>
#include <Mesh.hpp>
#include <MeshData.hpp>
#include <FiniteVolumesEulerUnknowns.hpp>
#include <BoundaryCondition.hpp>
#include <SubItemValuePerItem.hpp>
template<typename MeshData>
class AcousticSolver
{
using MeshType = typename MeshData::MeshType;
using UnknownsType = FiniteVolumesEulerUnknowns<MeshData>;
MeshData& m_mesh_data;
const MeshType& m_mesh;
const typename MeshType::Connectivity& m_connectivity;
const std::vector<BoundaryConditionHandler>& m_boundary_condition_list;
constexpr static size_t dimension = MeshType::dimension;
using Rd = TinyVector<dimension>;
using Rdd = TinyMatrix<dimension>;
private:
PASTIS_INLINE
const CellValue<const double>
computeRhoCj(const CellValue<const double>& rhoj,
const CellValue<const double>& cj)
{
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j) {
m_rhocj[j] = rhoj[j]*cj[j];
});
return m_rhocj;
}
PASTIS_INLINE
void computeAjr(const CellValue<const double>& rhocj,
const NodeValuePerCell<const Rd>& Cjr,
const NodeValuePerCell<const double>& ljr,
const NodeValuePerCell<const Rd>& njr)
{
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j) {
const size_t& nb_nodes =m_Ajr.numberOfSubValues(j);
const double& rho_c = rhocj[j];
for (size_t r=0; r<nb_nodes; ++r) {
m_Ajr(j,r) = tensorProduct(rho_c*Cjr(j,r), njr(j,r));
}
});
}
PASTIS_INLINE
const NodeValue<const Rdd>
computeAr(const NodeValuePerCell<const Rdd>& Ajr) {
const auto& node_to_cell_matrix
= m_connectivity.nodeToCellMatrix();
const auto& node_local_numbers_in_their_cells
= m_connectivity.nodeLocalNumbersInTheirCells();
Kokkos::parallel_for(m_mesh.numberOfNodes(), PASTIS_LAMBDA(const NodeId& r) {
Rdd sum = zero;
const auto& node_to_cell = node_to_cell_matrix[r];
const auto& node_local_number_in_its_cells
= node_local_numbers_in_their_cells.itemValues(r);
for (size_t j=0; j<node_to_cell.size(); ++j) {
const CellId J = node_to_cell[j];
const unsigned int R = node_local_number_in_its_cells[j];
sum += Ajr(J,R);
}
m_Ar[r] = sum;
});
return m_Ar;
}
PASTIS_INLINE
const NodeValue<const Rd>
computeBr(const NodeValuePerCell<Rdd>& Ajr,
const NodeValuePerCell<const Rd>& Cjr,
const CellValue<const Rd>& uj,
const CellValue<const double>& pj) {
const auto& node_to_cell_matrix
= m_connectivity.nodeToCellMatrix();
const auto& node_local_numbers_in_their_cells
= m_connectivity.nodeLocalNumbersInTheirCells();
Kokkos::parallel_for(m_mesh.numberOfNodes(), PASTIS_LAMBDA(const NodeId& r) {
Rd& br = m_br[r];
br = zero;
const auto& node_to_cell = node_to_cell_matrix[r];
const auto& node_local_number_in_its_cells
= node_local_numbers_in_their_cells.itemValues(r);
for (size_t j=0; j<node_to_cell.size(); ++j) {
const CellId J = node_to_cell[j];
const unsigned int R = node_local_number_in_its_cells[j];
br += Ajr(J,R)*uj[J] + pj[J]*Cjr(J,R);
}
});
return m_br;
}
void applyBoundaryConditions()
{
for (const auto& handler : m_boundary_condition_list) {
switch (handler.boundaryCondition().type()) {
case BoundaryCondition::normal_velocity: {
std::cerr << __FILE__ << ':' << __LINE__ << ": normal_velocity BC NIY\n";
std::exit(0);
break;
}
case BoundaryCondition::velocity: {
std::cerr << __FILE__ << ':' << __LINE__ << ": velocity BC NIY\n";
std::exit(0);
break;
}
case BoundaryCondition::pressure: {
// const PressureBoundaryCondition& pressure_bc
// = dynamic_cast<const PressureBoundaryCondition&>(handler.boundaryCondition());
std::cerr << __FILE__ << ':' << __LINE__ << ": pressure BC NIY\n";
std::exit(0);
break;
}
case BoundaryCondition::symmetry: {
const SymmetryBoundaryCondition<dimension>& symmetry_bc
= dynamic_cast<const SymmetryBoundaryCondition<dimension>&>(handler.boundaryCondition());
const Rd& n = symmetry_bc.outgoingNormal();
const Rdd I = identity;
const Rdd nxn = tensorProduct(n,n);
const Rdd P = I-nxn;
const Array<const NodeId>& node_list
= symmetry_bc.nodeList();
Kokkos::parallel_for(symmetry_bc.numberOfNodes(), PASTIS_LAMBDA(const int& r_number) {
const NodeId r = node_list[r_number];
m_Ar[r] = P*m_Ar[r]*P + nxn;
m_br[r] = P*m_br[r];
});
break;
}
}
}
}
NodeValue<Rd>
computeUr(const NodeValue<const Rdd>& Ar,
const NodeValue<const Rd>& br)
{
inverse(Ar, m_inv_Ar);
const NodeValue<const Rdd> invAr = m_inv_Ar;
Kokkos::parallel_for(m_mesh.numberOfNodes(), PASTIS_LAMBDA(const NodeId& r) {
m_ur[r]=invAr[r]*br[r];
});
return m_ur;
}
void
computeFjr(const NodeValuePerCell<Rdd>& Ajr,
const NodeValue<const Rd>& ur,
const NodeValuePerCell<const Rd>& Cjr,
const CellValue<const Rd>& uj,
const CellValue<const double>& pj)
{
const auto& cell_to_node_matrix
= m_mesh.connectivity().cellToNodeMatrix();
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j) {
const auto& cell_nodes = cell_to_node_matrix[j];
for (size_t r=0; r<cell_nodes.size(); ++r) {
m_Fjr(j,r) = Ajr(j,r)*(uj[j]-ur[cell_nodes[r]])+pj[j]*Cjr(j,r);
}
});
}
void inverse(const NodeValue<const Rdd>& A,
NodeValue<Rdd>& inv_A) const
{
Kokkos::parallel_for(m_mesh.numberOfNodes(), PASTIS_LAMBDA(const NodeId& r) {
inv_A[r] = ::inverse(A[r]);
});
}
PASTIS_INLINE
void computeExplicitFluxes(const NodeValue<const Rd>& xr,
const CellValue<const Rd>& xj,
const CellValue<const double>& rhoj,
const CellValue<const Rd>& uj,
const CellValue<const double>& pj,
const CellValue<const double>& cj,
const CellValue<const double>& Vj,
const NodeValuePerCell<const Rd>& Cjr,
const NodeValuePerCell<const double>& ljr,
const NodeValuePerCell<const Rd>& njr) {
const CellValue<const double> rhocj = computeRhoCj(rhoj, cj);
computeAjr(rhocj, Cjr, ljr, njr);
NodeValuePerCell<const Rdd> Ajr = m_Ajr;
const NodeValue<const Rdd> Ar = computeAr(Ajr);
const NodeValue<const Rd> br = computeBr(m_Ajr, Cjr, uj, pj);
this->applyBoundaryConditions();
NodeValue<Rd>& ur = m_ur;
ur = computeUr(Ar, br);
computeFjr(m_Ajr, ur, Cjr, uj, pj);
}
NodeValue<Rd> m_br;
NodeValuePerCell<Rdd> m_Ajr;
NodeValue<Rdd> m_Ar;
NodeValue<Rdd> m_inv_Ar;
NodeValuePerCell<Rd> m_Fjr;
NodeValue<Rd> m_ur;
CellValue<double> m_rhocj;
CellValue<double> m_Vj_over_cj;
public:
AcousticSolver(MeshData& mesh_data,
UnknownsType& unknowns,
const std::vector<BoundaryConditionHandler>& bc_list)
: m_mesh_data(mesh_data),
m_mesh(mesh_data.mesh()),
m_connectivity(m_mesh.connectivity()),
m_boundary_condition_list(bc_list),
m_br(m_connectivity),
m_Ajr(m_connectivity),
m_Ar(m_connectivity),
m_inv_Ar(m_connectivity),
m_Fjr(m_connectivity),
m_ur(m_connectivity),
m_rhocj(m_connectivity),
m_Vj_over_cj(m_connectivity)
{
;
}
PASTIS_INLINE
double acoustic_dt(const CellValue<const double>& Vj,
const CellValue<const double>& cj) const
{
const NodeValuePerCell<const double>& ljr = m_mesh_data.ljr();
const auto& cell_to_node_matrix
= m_mesh.connectivity().cellToNodeMatrix();
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
const auto& cell_nodes = cell_to_node_matrix[j];
double S = 0;
for (size_t r=0; r<cell_nodes.size(); ++r) {
S += ljr(j,r);
}
m_Vj_over_cj[j] = 2*Vj[j]/(S*cj[j]);
});
return ReduceMin(m_Vj_over_cj);
}
void computeNextStep(const double& t, const double& dt,
UnknownsType& unknowns)
{
CellValue<double>& rhoj = unknowns.rhoj();
CellValue<Rd>& uj = unknowns.uj();
CellValue<double>& Ej = unknowns.Ej();
CellValue<double>& ej = unknowns.ej();
CellValue<double>& pj = unknowns.pj();
CellValue<double>& cj = unknowns.cj();
const CellValue<const Rd>& xj = m_mesh_data.xj();
const CellValue<const double>& Vj = m_mesh_data.Vj();
const NodeValuePerCell<const Rd>& Cjr = m_mesh_data.Cjr();
const NodeValuePerCell<const double>& ljr = m_mesh_data.ljr();
const NodeValuePerCell<const Rd>& njr = m_mesh_data.njr();
const NodeValue<const Rd>& xr = m_mesh.xr();
computeExplicitFluxes(xr, xj, rhoj, uj, pj, cj, Vj, Cjr, ljr, njr);
const NodeValuePerCell<Rd>& Fjr = m_Fjr;
const NodeValue<const Rd> ur = m_ur;
const auto& cell_to_node_matrix
= m_mesh.connectivity().cellToNodeMatrix();
const CellValue<const double> inv_mj = unknowns.invMj();
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j) {
const auto& cell_nodes = cell_to_node_matrix[j];
Rd momentum_fluxes = zero;
double energy_fluxes = 0;
for (size_t R=0; R<cell_nodes.size(); ++R) {
const NodeId r=cell_nodes[R];
momentum_fluxes += Fjr(j,R);
energy_fluxes += (Fjr(j,R), ur[r]);
}
uj[j] -= (dt*inv_mj[j]) * momentum_fluxes;
Ej[j] -= (dt*inv_mj[j]) * energy_fluxes;
});
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j) {
ej[j] = Ej[j] - 0.5 * (uj[j],uj[j]);
});
NodeValue<Rd> mutable_xr = m_mesh.mutableXr();
Kokkos::parallel_for(m_mesh.numberOfNodes(), PASTIS_LAMBDA(const NodeId& r){
mutable_xr[r] += dt*ur[r];
});
m_mesh_data.updateAllData();
const CellValue<const double> mj = unknowns.mj();
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
rhoj[j] = mj[j]/Vj[j];
});
}
};
#endif // ACOUSTIC_SOLVER_HPP