Select Git revision
Connectivity.cpp
-
Stéphane Del Pino authored
Now use m_item_to_item_matrix[cell_id][node_id] instead
Stéphane Del Pino authoredNow use m_item_to_item_matrix[cell_id][node_id] instead
Connectivity.cpp 7.85 KiB
#include <Connectivity.hpp>
#include <map>
template<>
void Connectivity<3>::_computeFaceCellConnectivities()
{
Kokkos::View<unsigned short*> cell_nb_faces("cell_nb_faces", this->numberOfCells());
typedef std::tuple<unsigned int, unsigned short, bool> CellFaceInfo;
const auto& cell_to_node_matrix
= m_item_to_item_matrix[itemId(TypeOfItem::cell)][itemId(TypeOfItem::node)];
std::map<Face, std::vector<CellFaceInfo>> face_cells_map;
for (unsigned int j=0; j<this->numberOfCells(); ++j) {
const auto& cell_nodes = cell_to_node_matrix.rowConst(j);
switch (cell_nodes.length) {
case 4: { // tetrahedron
cell_nb_faces[j] = 4;
// face 0
Face f0({cell_nodes(1),
cell_nodes(2),
cell_nodes(3)});
face_cells_map[f0].emplace_back(std::make_tuple(j, 0, f0.reversed()));
// face 1
Face f1({cell_nodes(0),
cell_nodes(3),
cell_nodes(2)});
face_cells_map[f1].emplace_back(std::make_tuple(j, 1, f1.reversed()));
// face 2
Face f2({cell_nodes(0),
cell_nodes(1),
cell_nodes(3)});
face_cells_map[f2].emplace_back(std::make_tuple(j, 2, f2.reversed()));
// face 3
Face f3({cell_nodes(0),
cell_nodes(2),
cell_nodes(1)});
face_cells_map[f3].emplace_back(std::make_tuple(j, 3, f3.reversed()));
break;
}
case 8: { // hexahedron
// face 0
Face f0({cell_nodes(3),
cell_nodes(2),
cell_nodes(1),
cell_nodes(0)});
face_cells_map[f0].emplace_back(std::make_tuple(j, 0, f0.reversed()));
// face 1
Face f1({cell_nodes(4),
cell_nodes(5),
cell_nodes(6),
cell_nodes(7)});
face_cells_map[f1].emplace_back(std::make_tuple(j, 1, f1.reversed()));
// face 2
Face f2({cell_nodes(0),
cell_nodes(4),
cell_nodes(7),
cell_nodes(3)});
face_cells_map[f2].emplace_back(std::make_tuple(j, 2, f2.reversed()));
// face 3
Face f3({cell_nodes(1),
cell_nodes(2),
cell_nodes(6),
cell_nodes(5)});
face_cells_map[f3].emplace_back(std::make_tuple(j, 3, f3.reversed()));
// face 4
Face f4({cell_nodes(0),
cell_nodes(1),
cell_nodes(5),
cell_nodes(4)});
face_cells_map[f4].emplace_back(std::make_tuple(j, 4, f4.reversed()));
// face 5
Face f5({cell_nodes(3),
cell_nodes(7),
cell_nodes(6),
cell_nodes(2)});
face_cells_map[f5].emplace_back(std::make_tuple(j, 5, f5.reversed()));
cell_nb_faces[j] = 6;
break;
}
default: {
std::cerr << "unexpected cell type!\n";
std::exit(0);
}
}
}
{
std::vector<std::vector<unsigned int>> cell_to_face_vector(this->numberOfCells());
for (size_t j=0; j<cell_to_face_vector.size(); ++j) {
cell_to_face_vector[j].resize(cell_nb_faces[j]);
}
int l=0;
for (const auto& face_cells_vector : face_cells_map) {
const auto& cells_vector = face_cells_vector.second;
for (unsigned short lj=0; lj<cells_vector.size(); ++lj) {
const auto& [cell_number, cell_local_face, reversed] = cells_vector[lj];
cell_to_face_vector[cell_number][cell_local_face] = l;
}
++l;
}
m_cell_to_face_matrix = cell_to_face_vector;
}
FaceValuePerCell<bool> cell_face_is_reversed(*this);
{
for (const auto& face_cells_vector : face_cells_map) {
const auto& cells_vector = face_cells_vector.second;
for (unsigned short lj=0; lj<cells_vector.size(); ++lj) {
const auto& [cell_number, cell_local_face, reversed] = cells_vector[lj];
cell_face_is_reversed(cell_number, cell_local_face) = reversed;
}
}
m_cell_face_is_reversed = cell_face_is_reversed;
}
{
std::vector<std::vector<unsigned int>> face_to_node_vector(face_cells_map.size());
int l=0;
for (const auto& face_info : face_cells_map) {
const Face& face = face_info.first;
face_to_node_vector[l] = face.nodeIdList();
++l;
}
m_face_to_node_matrix = face_to_node_vector;
}
{
int l=0;
for (const auto& face_cells_vector : face_cells_map) {
const Face& face = face_cells_vector.first;
m_face_number_map[face] = l;
++l;
}
}
m_connectivity_computer.computeInverseConnectivityMatrix(m_cell_to_face_matrix,
m_face_to_cell_matrix);
m_face_to_cell_local_face = CellValuePerFace<unsigned short>(*this);
m_connectivity_computer.computeLocalChildItemNumberInItem(m_cell_to_face_matrix,
m_face_to_cell_matrix,
m_face_to_cell_local_face);
#warning check that the number of cell per faces is <=2
std::unordered_map<unsigned int, std::vector<unsigned int>> node_faces_map;
for (size_t l=0; l<m_face_to_node_matrix.numRows(); ++l) {
const auto& face_nodes = m_face_to_node_matrix.rowConst(l);
for (size_t lr=0; lr<face_nodes.length; ++lr) {
const unsigned int r = face_nodes(lr);
node_faces_map[r].emplace_back(l);
}
}
Kokkos::View<unsigned short*> node_nb_faces("node_nb_faces", this->numberOfNodes());
size_t max_nb_face_per_node = 0;
for (auto node_faces : node_faces_map) {
max_nb_face_per_node = std::max(node_faces.second.size(), max_nb_face_per_node);
node_nb_faces[node_faces.first] = node_faces.second.size();
}
m_node_nb_faces = node_nb_faces;
Kokkos::View<unsigned int**> node_faces("node_faces", this->numberOfNodes(), max_nb_face_per_node);
for (auto node_faces_vector : node_faces_map) {
const unsigned int r = node_faces_vector.first;
const std::vector<unsigned int>& faces_vector = node_faces_vector.second;
for (size_t l=0; l < faces_vector.size(); ++l) {
node_faces(r, l) = faces_vector[l];
}
}
m_node_faces = node_faces;
}
template<>
void Connectivity<2>::_computeFaceCellConnectivities()
{
const auto& cell_to_node_matrix
= m_item_to_item_matrix[itemId(TypeOfItem::cell)][itemId(TypeOfItem::node)];
// In 2D faces are simply define
typedef std::pair<unsigned int, unsigned short> CellFaceId;
std::map<Face, std::vector<CellFaceId>> face_cells_map;
for (unsigned int j=0; j<this->numberOfCells(); ++j) {
const auto& cell_nodes = cell_to_node_matrix.rowConst(j);
for (unsigned short r=0; r<cell_nodes.length; ++r) {
unsigned int node0_id = cell_nodes(r);
unsigned int node1_id = cell_nodes((r+1)%cell_nodes.length);
if (node1_id<node0_id) {
std::swap(node0_id, node1_id);
}
face_cells_map[Face({node0_id, node1_id})].push_back(std::make_pair(j, r));
}
}
{
int l=0;
for (const auto& face_cells_vector : face_cells_map) {
const Face& face = face_cells_vector.first;
m_face_number_map[face] = l;
++l;
}
}
{
std::vector<std::vector<unsigned int>> face_to_node_vector(face_cells_map.size());
int l=0;
for (const auto& face_info : face_cells_map) {
const Face& face = face_info.first;
face_to_node_vector[l] = {face.m_node0_id, face.m_node1_id};
++l;
}
m_face_to_node_matrix = face_to_node_vector;
}
{
std::vector<std::vector<unsigned int>> face_to_cell_vector(face_cells_map.size());
int l=0;
for (const auto& face_cells_vector : face_cells_map) {
const auto& [face, cell_info_vector] = face_cells_vector;
for (const auto& cell_info : cell_info_vector) {
face_to_cell_vector[l].push_back(cell_info.second);
}
++l;
}
m_face_to_cell_matrix = face_to_cell_vector;
}
}