Select Git revision
GmshReader.cpp
DiamondDualMeshBuilder.cpp 10.58 KiB
#include <mesh/DiamondDualMeshBuilder.hpp>
#include <mesh/Connectivity.hpp>
#include <mesh/ConnectivityDescriptor.hpp>
#include <mesh/ConnectivityDispatcher.hpp>
#include <mesh/DiamondDualConnectivityBuilder.hpp>
#include <mesh/DiamondDualConnectivityManager.hpp>
#include <mesh/ItemValueUtils.hpp>
#include <mesh/Mesh.hpp>
#include <mesh/MeshData.hpp>
#include <mesh/MeshDataManager.hpp>
#include <mesh/RefId.hpp>
#include <utils/Array.hpp>
#include <utils/CastArray.hpp>
#include <utils/Messenger.hpp>
#include <utils/PugsAssert.hpp>
template <size_t Dimension>
class MeshToDualDataMapper
{
private:
const IConnectivity* m_primal_connectivity;
const IConnectivity* m_dual_connectivity;
using NodeIdToNodeIdMap = Array<std::pair<NodeId, NodeId>>;
NodeIdToNodeIdMap m_primal_node_to_dual_node_map;
using CellIdToNodeIdMap = Array<std::pair<CellId, NodeId>>;
CellIdToNodeIdMap m_primal_cell_to_dual_node_map;
using FaceIdToCellIdMap = Array<std::pair<FaceId, CellId>>;
FaceIdToCellIdMap m_primal_face_to_dual_cell_map;
public:
template <typename OriginDataType1, typename OriginDataType2, typename DestinationDataType>
void
toDualNode(const NodeValue<OriginDataType1>& primal_node_value,
const CellValue<OriginDataType2>& primal_cell_value,
const NodeValue<DestinationDataType>& dual_node_value)
{
static_assert(not std::is_const_v<DestinationDataType>, "destination data type must not be constant");
static_assert(std::is_same_v<std::remove_const_t<OriginDataType1>, DestinationDataType>, "incompatible types");
static_assert(std::is_same_v<std::remove_const_t<OriginDataType2>, DestinationDataType>, "incompatible types");
Assert(m_primal_connectivity == primal_cell_value.connectivity_ptr().get());
Assert(m_primal_connectivity == primal_node_value.connectivity_ptr().get());
Assert(m_dual_connectivity == dual_node_value.connectivity_ptr().get());
parallel_for(
m_primal_node_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
const auto [primal_node_id, dual_node_id] = m_primal_node_to_dual_node_map[i];
dual_node_value[dual_node_id] = primal_node_value[primal_node_id];
});
parallel_for(
m_primal_cell_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
const auto [primal_cell_id, dual_node_id] = m_primal_cell_to_dual_node_map[i];
dual_node_value[dual_node_id] = primal_cell_value[primal_cell_id];
});
}
template <typename OriginDataType, typename DestinationDataType1, typename DestinationDataType2>
void
fromDualNode(const NodeValue<OriginDataType>& dual_node_value,
const NodeValue<DestinationDataType1>& primal_node_value,
const CellValue<DestinationDataType2>& primal_cell_value)
{
static_assert(not std::is_const_v<DestinationDataType1>, "destination data type must not be constant");
static_assert(not std::is_const_v<DestinationDataType2>, "destination data type must not be constant");
static_assert(std::is_same_v<std::remove_const_t<OriginDataType>, DestinationDataType1>, "incompatible types");
static_assert(std::is_same_v<std::remove_const_t<OriginDataType>, DestinationDataType2>, "incompatible types");
Assert(m_primal_connectivity == primal_cell_value.connectivity_ptr().get());
Assert(m_primal_connectivity == primal_node_value.connectivity_ptr().get());
Assert(m_dual_connectivity == dual_node_value.connectivity_ptr().get());
parallel_for(
m_primal_node_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
const auto [primal_node_id, dual_node_id] = m_primal_node_to_dual_node_map[i];
primal_node_value[primal_node_id] = dual_node_value[dual_node_id];
});
parallel_for(
m_primal_cell_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
const auto [primal_cell_id, dual_node_id] = m_primal_cell_to_dual_node_map[i];
primal_cell_value[primal_cell_id] = dual_node_value[dual_node_id];
});
}
template <typename OriginDataType, typename DestinationDataType>
void
toDualCell(const FaceValue<OriginDataType>& primal_face_value, const CellValue<DestinationDataType>& dual_cell_value)
{
static_assert(not std::is_const_v<DestinationDataType>, "destination data type must not be constant");
static_assert(std::is_same_v<std::remove_const_t<OriginDataType>, DestinationDataType>, "incompatible types");
Assert(m_primal_connectivity == primal_face_value.connectivity_ptr().get());
Assert(m_dual_connectivity == dual_cell_value.connectivity_ptr().get());
parallel_for(
m_primal_face_to_dual_cell_map.size(), PUGS_LAMBDA(size_t i) {
const auto [primal_face_id, dual_cell_id] = m_primal_face_to_dual_cell_map[i];
dual_cell_value[dual_cell_id] = primal_face_value[primal_face_id];
});
parallel_for(
m_primal_cell_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
const auto [primal_face_id, dual_cell_id] = m_primal_face_to_dual_cell_map[i];
dual_cell_value[dual_cell_id] = primal_face_value[primal_face_id];
});
}
template <typename OriginDataType, typename DestinationDataType>
void
fromDualCell(const CellValue<DestinationDataType>& dual_cell_value,
const FaceValue<OriginDataType>& primal_face_value)
{
static_assert(not std::is_const_v<DestinationDataType>, "destination data type must not be constant");
static_assert(std::is_same_v<std::remove_const_t<OriginDataType>, DestinationDataType>, "incompatible types");
Assert(m_primal_connectivity == primal_face_value.connectivity_ptr().get());
Assert(m_dual_connectivity == dual_cell_value.connectivity_ptr().get());
parallel_for(
m_primal_face_to_dual_cell_map.size(), PUGS_LAMBDA(size_t i) {
const auto [primal_face_id, dual_cell_id] = m_primal_face_to_dual_cell_map[i];
primal_face_value[primal_face_id] = dual_cell_value[dual_cell_id];
});
parallel_for(
m_primal_cell_to_dual_node_map.size(), PUGS_LAMBDA(size_t i) {
const auto [primal_face_id, dual_cell_id] = m_primal_face_to_dual_cell_map[i];
primal_face_value[primal_face_id] = dual_cell_value[dual_cell_id];
});
}
MeshToDualDataMapper(const Connectivity<Dimension>& primal_connectivity,
const Connectivity<Dimension>& dual_connectivity)
: m_primal_connectivity{&primal_connectivity}, m_dual_connectivity{&dual_connectivity}
{
if constexpr (Dimension == 1) {
const auto& node_to_cell_matrix = primal_connectivity.nodeToCellMatrix();
NodeId dual_node_id = 0;
m_primal_node_to_dual_node_map = [&]() {
std::vector<std::pair<NodeId, NodeId>> primal_node_to_dual_node_vector;
for (NodeId primal_node_id = 0; primal_node_id < primal_connectivity.numberOfNodes(); ++primal_node_id) {
if (node_to_cell_matrix[primal_node_id].size() == 1) {
primal_node_to_dual_node_vector.push_back(std::make_pair(primal_node_id, dual_node_id++));
}
}
return convert_to_array(primal_node_to_dual_node_vector);
}();
m_primal_cell_to_dual_node_map = [&]() {
CellIdToNodeIdMap primal_cell_to_dual_node_map{primal_connectivity.numberOfCells()};
for (CellId primal_cell_id = 0; primal_cell_id < primal_cell_to_dual_node_map.size(); ++primal_cell_id) {
primal_cell_to_dual_node_map[primal_cell_id] = std::make_pair(primal_cell_id, dual_node_id++);
}
return primal_cell_to_dual_node_map;
}();
} else {
m_primal_node_to_dual_node_map = [&]() {
NodeIdToNodeIdMap primal_node_to_dual_node_map{primal_connectivity.numberOfNodes()};
for (NodeId primal_node_id = 0; primal_node_id < primal_node_to_dual_node_map.size(); ++primal_node_id) {
const NodeId dual_node_id = primal_node_id;
primal_node_to_dual_node_map[primal_node_id] = std::make_pair(primal_node_id, dual_node_id);
}
return primal_node_to_dual_node_map;
}();
m_primal_cell_to_dual_node_map = [&]() {
CellIdToNodeIdMap primal_cell_to_dual_node_map{primal_connectivity.numberOfCells()};
NodeId dual_node_id = m_primal_node_to_dual_node_map.size();
for (CellId primal_cell_id = 0; primal_cell_id < primal_cell_to_dual_node_map.size(); ++primal_cell_id) {
primal_cell_to_dual_node_map[primal_cell_id] = std::make_pair(primal_cell_id, dual_node_id++);
}
return primal_cell_to_dual_node_map;
}();
}
m_primal_face_to_dual_cell_map = [&]() {
FaceIdToCellIdMap primal_face_to_dual_cell_map{primal_connectivity.numberOfFaces()};
for (size_t id = 0; id < primal_face_to_dual_cell_map.size(); ++id) {
const CellId dual_cell_id = id;
const FaceId primal_face_id = id;
primal_face_to_dual_cell_map[id] = std::make_pair(primal_face_id, dual_cell_id);
}
return primal_face_to_dual_cell_map;
}();
}
};
template <size_t Dimension>
void
DiamondDualMeshBuilder::_buildDualDiamondMeshFrom(const std::shared_ptr<const IMesh>& p_i_mesh)
{
using ConnectivityType = Connectivity<Dimension>;
using MeshType = Mesh<Connectivity<Dimension>>;
std::shared_ptr p_primal_mesh = std::dynamic_pointer_cast<const MeshType>(p_i_mesh);
const MeshType& primal_mesh = *p_primal_mesh;
DiamondDualConnectivityManager& manager = DiamondDualConnectivityManager::instance();
std::shared_ptr<const ConnectivityType> p_diamond_connectivity =
manager.getDiamondDualConnectivity(primal_mesh.connectivity());
const ConnectivityType& diamond_connectivity = *p_diamond_connectivity;
const NodeValue<const TinyVector<Dimension>> primal_xr = primal_mesh.xr();
MeshData<Dimension>& primal_mesh_data = MeshDataManager::instance().getMeshData(primal_mesh);
const CellValue<const TinyVector<Dimension>> primal_xj = primal_mesh_data.xj();
MeshToDualDataMapper<Dimension> mesh_to_dual_data_mapper{primal_mesh.connectivity(), diamond_connectivity};
NodeValue<TinyVector<Dimension>> diamond_xr{diamond_connectivity};
mesh_to_dual_data_mapper.toDualNode(primal_xr, primal_xj, diamond_xr);
m_mesh = std::make_shared<MeshType>(p_diamond_connectivity, diamond_xr);
}
DiamondDualMeshBuilder::DiamondDualMeshBuilder(const std::shared_ptr<const IMesh>& p_mesh)
{
std::cout << "building DiamondDualMesh\n";
switch (p_mesh->dimension()) {
case 1: {
this->_buildDualDiamondMeshFrom<1>(p_mesh);
break;
}
case 2: {
this->_buildDualDiamondMeshFrom<2>(p_mesh);
break;
}
case 3: {
this->_buildDualDiamondMeshFrom<3>(p_mesh);
break;
}
default: {
throw UnexpectedError("invalid mesh dimension: " + std::to_string(p_mesh->dimension()));
}
}
}