Skip to content
Snippets Groups Projects
Select Git revision
  • 54db8b5b8fedfd3781d3500d2cd438f771c13457
  • develop default protected
  • feature/gmsh-reader
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • feature/escobar-smoother
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

userdoc.org

Blame
  • AcousticSolver.hpp 11.61 KiB
    #ifndef ACOUSTIC_SOLVER_HPP
    #define ACOUSTIC_SOLVER_HPP
    
    #include <rang.hpp>
    
    #include <utils/ArrayUtils.hpp>
    
    #include <scheme/BlockPerfectGas.hpp>
    #include <utils/PugsAssert.hpp>
    
    #include <scheme/BoundaryCondition.hpp>
    #include <scheme/FiniteVolumesEulerUnknowns.hpp>
    
    #include <mesh/Mesh.hpp>
    #include <mesh/MeshData.hpp>
    #include <mesh/MeshDataManager.hpp>
    
    #include <algebra/TinyMatrix.hpp>
    #include <algebra/TinyVector.hpp>
    
    #include <mesh/ItemValueUtils.hpp>
    #include <mesh/SubItemValuePerItem.hpp>
    
    #include <utils/Exceptions.hpp>
    #include <utils/Messenger.hpp>
    
    #include <iostream>
    
    template <typename MeshType>
    class AcousticSolver
    {
      constexpr static size_t Dimension = MeshType::Dimension;
    
      using MeshDataType = MeshData<Dimension>;
      using UnknownsType = FiniteVolumesEulerUnknowns<MeshType>;
    
      std::shared_ptr<const MeshType> m_mesh;
      const typename MeshType::Connectivity& m_connectivity;
      const std::vector<BoundaryConditionHandler>& m_boundary_condition_list;
    
      using Rd  = TinyVector<Dimension>;
      using Rdd = TinyMatrix<Dimension>;
    
     private:
      PUGS_INLINE
      const CellValue<const double>
      computeRhoCj(const CellValue<const double>& rhoj, const CellValue<const double>& cj)
      {
        parallel_for(
          m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { m_rhocj[j] = rhoj[j] * cj[j]; });
        return m_rhocj;
      }
    
      PUGS_INLINE
      void
      computeAjr(const CellValue<const double>& rhocj,
                 const NodeValuePerCell<const Rd>& Cjr,
                 const NodeValuePerCell<const double>& /* ljr */,
                 const NodeValuePerCell<const Rd>& njr)
      {
        parallel_for(
          m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
            const size_t& nb_nodes = m_Ajr.numberOfSubValues(j);
            const double& rho_c    = rhocj[j];
            for (size_t r = 0; r < nb_nodes; ++r) {
              m_Ajr(j, r) = tensorProduct(rho_c * Cjr(j, r), njr(j, r));
            }
          });
      }
    
      PUGS_INLINE
      const NodeValue<const Rdd>
      computeAr(const NodeValuePerCell<const Rdd>& Ajr)
      {
        const auto& node_to_cell_matrix               = m_connectivity.nodeToCellMatrix();
        const auto& node_local_numbers_in_their_cells = m_connectivity.nodeLocalNumbersInTheirCells();
    
        parallel_for(
          m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) {
            Rdd sum                                    = zero;
            const auto& node_to_cell                   = node_to_cell_matrix[r];
            const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemValues(r);
    
            for (size_t j = 0; j < node_to_cell.size(); ++j) {
              const CellId J       = node_to_cell[j];
              const unsigned int R = node_local_number_in_its_cells[j];
              sum += Ajr(J, R);
            }
            m_Ar[r] = sum;
          });
    
        return m_Ar;
      }
    
      PUGS_INLINE
      const NodeValue<const Rd>
      computeBr(const NodeValuePerCell<Rdd>& Ajr,
                const NodeValuePerCell<const Rd>& Cjr,
                const CellValue<const Rd>& uj,
                const CellValue<const double>& pj)
      {
        const auto& node_to_cell_matrix               = m_connectivity.nodeToCellMatrix();
        const auto& node_local_numbers_in_their_cells = m_connectivity.nodeLocalNumbersInTheirCells();
    
        parallel_for(
          m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) {
            Rd& br                                     = m_br[r];
            br                                         = zero;
            const auto& node_to_cell                   = node_to_cell_matrix[r];
            const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemValues(r);
            for (size_t j = 0; j < node_to_cell.size(); ++j) {
              const CellId J       = node_to_cell[j];
              const unsigned int R = node_local_number_in_its_cells[j];
              br += Ajr(J, R) * uj[J] + pj[J] * Cjr(J, R);
            }
          });
    
        return m_br;
      }
    
      void
      applyBoundaryConditions()
      {
        for (const auto& handler : m_boundary_condition_list) {
          switch (handler.boundaryCondition().type()) {
          case BoundaryCondition::normal_velocity: {
            throw NotImplementedError("normal_velocity BC");
          }
          case BoundaryCondition::velocity: {
            throw NotImplementedError("velocity BC");
          }
          case BoundaryCondition::pressure: {
            const PressureBoundaryCondition<Dimension>& pressure_bc =
              dynamic_cast<const PressureBoundaryCondition<Dimension>&>(handler.boundaryCondition());
            if constexpr (Dimension == 1) {
              MeshData<Dimension>& mesh_data       = MeshDataManager::instance().getMeshData(*m_mesh);
              const NodeValuePerCell<const Rd> Cjr = mesh_data.Cjr();
    
              const auto& node_to_cell_matrix               = m_connectivity.nodeToCellMatrix();
              const auto& node_local_numbers_in_their_cells = m_connectivity.nodeLocalNumbersInTheirCells();
    
              const auto& node_list  = pressure_bc.faceList();
              const auto& value_list = pressure_bc.valueList();
              for (size_t i_node = 0; i_node < node_list.size(); ++i_node) {
                const NodeId node_id       = node_list[i_node];
                const auto& node_cell_list = node_to_cell_matrix[node_id];
                Assert(node_cell_list.size() == 1);
    
                CellId node_cell_id              = node_cell_list[0];
                size_t node_local_number_in_cell = node_local_numbers_in_their_cells(node_id, 0);
    
                m_br[node_id] -= value_list[i_node] * Cjr(node_cell_id, node_local_number_in_cell);
              }
            } else {
              throw NotImplementedError("pressure bc in dimension>1");
            }
            break;
          }
          case BoundaryCondition::symmetry: {
            const SymmetryBoundaryCondition<Dimension>& symmetry_bc =
              dynamic_cast<const SymmetryBoundaryCondition<Dimension>&>(handler.boundaryCondition());
            const Rd& n = symmetry_bc.outgoingNormal();
    
            const Rdd I   = identity;
            const Rdd nxn = tensorProduct(n, n);
            const Rdd P   = I - nxn;
    
            const Array<const NodeId>& node_list = symmetry_bc.nodeList();
            parallel_for(
              symmetry_bc.numberOfNodes(), PUGS_LAMBDA(int r_number) {
                const NodeId r = node_list[r_number];
    
                m_Ar[r] = P * m_Ar[r] * P + nxn;
                m_br[r] = P * m_br[r];
              });
            break;
          }
          }
        }
      }
    
      NodeValue<Rd>
      computeUr(const NodeValue<const Rdd>& Ar, const NodeValue<const Rd>& br)
      {
        inverse(Ar, m_inv_Ar);
        const NodeValue<const Rdd> invAr = m_inv_Ar;
        parallel_for(
          m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) { m_ur[r] = invAr[r] * br[r]; });
    
        return m_ur;
      }
    
      void
      computeFjr(const NodeValuePerCell<Rdd>& Ajr,
                 const NodeValue<const Rd>& ur,
                 const NodeValuePerCell<const Rd>& Cjr,
                 const CellValue<const Rd>& uj,
                 const CellValue<const double>& pj)
      {
        const auto& cell_to_node_matrix = m_mesh->connectivity().cellToNodeMatrix();
    
        parallel_for(
          m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            for (size_t r = 0; r < cell_nodes.size(); ++r) {
              m_Fjr(j, r) = Ajr(j, r) * (uj[j] - ur[cell_nodes[r]]) + pj[j] * Cjr(j, r);
            }
          });
      }
    
      void
      inverse(const NodeValue<const Rdd>& A, NodeValue<Rdd>& inv_A) const
      {
        parallel_for(
          m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) { inv_A[r] = ::inverse(A[r]); });
      }
    
      PUGS_INLINE
      void
      computeExplicitFluxes(const CellValue<const double>& rhoj,
                            const CellValue<const Rd>& uj,
                            const CellValue<const double>& pj,
                            const CellValue<const double>& cj,
                            const NodeValuePerCell<const Rd>& Cjr,
                            const NodeValuePerCell<const double>& ljr,
                            const NodeValuePerCell<const Rd>& njr)
      {
        const CellValue<const double> rhocj = computeRhoCj(rhoj, cj);
        computeAjr(rhocj, Cjr, ljr, njr);
    
        NodeValuePerCell<const Rdd> Ajr = m_Ajr;
        this->computeAr(Ajr);
        this->computeBr(m_Ajr, Cjr, uj, pj);
    
        this->applyBoundaryConditions();
    
        synchronize(m_Ar);
        synchronize(m_br);
    
        NodeValue<Rd>& ur = m_ur;
        ur                = computeUr(m_Ar, m_br);
        computeFjr(m_Ajr, ur, Cjr, uj, pj);
      }
    
      NodeValue<Rd> m_br;
      NodeValuePerCell<Rdd> m_Ajr;
      NodeValue<Rdd> m_Ar;
      NodeValue<Rdd> m_inv_Ar;
      NodeValuePerCell<Rd> m_Fjr;
      NodeValue<Rd> m_ur;
      CellValue<double> m_rhocj;
      CellValue<double> m_Vj_over_cj;
    
     public:
      AcousticSolver(std::shared_ptr<const MeshType> p_mesh, const std::vector<BoundaryConditionHandler>& bc_list)
        : m_mesh(p_mesh),
          m_connectivity(m_mesh->connectivity()),
          m_boundary_condition_list(bc_list),
          m_br(m_connectivity),
          m_Ajr(m_connectivity),
          m_Ar(m_connectivity),
          m_inv_Ar(m_connectivity),
          m_Fjr(m_connectivity),
          m_ur(m_connectivity),
          m_rhocj(m_connectivity),
          m_Vj_over_cj(m_connectivity)
      {
        ;
      }
    
      PUGS_INLINE
      double
      acoustic_dt(const CellValue<const double>& Vj, const CellValue<const double>& cj) const
      {
        MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(*m_mesh);
    
        const NodeValuePerCell<const double>& ljr = mesh_data.ljr();
        const auto& cell_to_node_matrix           = m_mesh->connectivity().cellToNodeMatrix();
    
        parallel_for(
          m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            double S = 0;
            for (size_t r = 0; r < cell_nodes.size(); ++r) {
              S += ljr(j, r);
            }
            m_Vj_over_cj[j] = 2 * Vj[j] / (S * cj[j]);
          });
    
        return min(m_Vj_over_cj);
      }
    
      [[nodiscard]] std::shared_ptr<const MeshType>
      computeNextStep(double dt, UnknownsType& unknowns)
      {
        CellValue<double>& rhoj = unknowns.rhoj();
        CellValue<Rd>& uj       = unknowns.uj();
        CellValue<double>& Ej   = unknowns.Ej();
    
        CellValue<double>& ej = unknowns.ej();
        CellValue<double>& pj = unknowns.pj();
        CellValue<double>& cj = unknowns.cj();
    
        MeshData<Dimension>& mesh_data = MeshDataManager::instance().getMeshData(*m_mesh);
    
        const CellValue<const double> Vj         = mesh_data.Vj();
        const NodeValuePerCell<const Rd> Cjr     = mesh_data.Cjr();
        const NodeValuePerCell<const double> ljr = mesh_data.ljr();
        const NodeValuePerCell<const Rd> njr     = mesh_data.njr();
    
        computeExplicitFluxes(rhoj, uj, pj, cj, Cjr, ljr, njr);
    
        const NodeValuePerCell<Rd>& Fjr = m_Fjr;
        const NodeValue<const Rd> ur    = m_ur;
        const auto& cell_to_node_matrix = m_mesh->connectivity().cellToNodeMatrix();
    
        const CellValue<const double> inv_mj = unknowns.invMj();
        parallel_for(
          m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            Rd momentum_fluxes   = zero;
            double energy_fluxes = 0;
            for (size_t R = 0; R < cell_nodes.size(); ++R) {
              const NodeId r = cell_nodes[R];
              momentum_fluxes += Fjr(j, R);
              energy_fluxes += (Fjr(j, R), ur[r]);
            }
            uj[j] -= (dt * inv_mj[j]) * momentum_fluxes;
            Ej[j] -= (dt * inv_mj[j]) * energy_fluxes;
          });
    
        parallel_for(
          m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { ej[j] = Ej[j] - 0.5 * (uj[j], uj[j]); });
    
        NodeValue<Rd> new_xr = copy(m_mesh->xr());
        parallel_for(
          m_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId r) { new_xr[r] += dt * ur[r]; });
    
        m_mesh                         = std::make_shared<MeshType>(m_mesh->shared_connectivity(), new_xr);
        CellValue<const double> new_Vj = MeshDataManager::instance().getMeshData(*m_mesh).Vj();
    
        const CellValue<const double> mj = unknowns.mj();
        parallel_for(
          m_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { rhoj[j] = mj[j] / new_Vj[j]; });
    
        return m_mesh;
      }
    };
    
    #endif   // ACOUSTIC_SOLVER_HPP