Skip to content
Snippets Groups Projects
Select Git revision
  • 50c1dd66d1a2e8033a7ac41b352474b5604d7cf3
  • develop default protected
  • feature/variational-hydro
  • origin/stage/bouguettaia
  • feature/gmsh-reader
  • feature/reconstruction
  • save_clemence
  • feature/kinetic-schemes
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

InterpolateItemArray.hpp

Blame
  • MeshData.hpp 8.65 KiB
    #ifndef MESH_DATA_HPP
    #define MESH_DATA_HPP
    
    #include <Kokkos_Core.hpp>
    #include <TinyVector.hpp>
    
    #include <ItemValue.hpp>
    #include <SubItemValuePerItem.hpp>
    
    #include <map>
    
    template <typename M>
    class MeshData
    {
     public:
      using  MeshType = M;
    
      static constexpr size_t dimension = MeshType::dimension;
      static_assert(dimension>0, "dimension must be strictly positive");
    
      using Rd = TinyVector<dimension>;
    
      static constexpr double inv_dimension = 1./dimension;
    
     private:
      const MeshType& m_mesh;
      NodeValuePerCell<const Rd> m_Cjr;
      NodeValuePerCell<const double> m_ljr;
      NodeValuePerCell<const Rd> m_njr;
      CellValue<const Rd> m_xj;
      CellValue<const double> m_Vj;
    
      PASTIS_INLINE
      void _updateCenter()
      { // Computes vertices isobarycenter
        if constexpr (dimension == 1) {
          const NodeValue<const Rd>& xr = m_mesh.xr();
    
          const auto& cell_to_node_matrix
              = m_mesh.connectivity().cellToNodeMatrix();
    
          CellValue<Rd> xj(m_mesh.connectivity());
          Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
              const auto& cell_nodes = cell_to_node_matrix[j];
              xj[j] = 0.5*(xr[cell_nodes[0]]+xr[cell_nodes[1]]);
            });
          m_xj = xj;
        } else {
          const NodeValue<const Rd>& xr = m_mesh.xr();
    
          const CellValue<const double>& inv_cell_nb_nodes
              = m_mesh.connectivity().invCellNbNodes();
    
          const auto& cell_to_node_matrix
              = m_mesh.connectivity().cellToNodeMatrix();
          CellValue<Rd> xj(m_mesh.connectivity());
          Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
              Rd X = zero;
              const auto& cell_nodes = cell_to_node_matrix[j];
              for (size_t R=0; R<cell_nodes.size(); ++R) {
                X += xr[cell_nodes[R]];
              }
              xj[j] = inv_cell_nb_nodes[j]*X;
            });
          m_xj = xj;
        }
      }
    
      PASTIS_INLINE
      void _updateVolume()
      {
        const NodeValue<const Rd>& xr = m_mesh.xr();
        const auto& cell_to_node_matrix
            = m_mesh.connectivity().cellToNodeMatrix();
    
        CellValue<double> Vj(m_mesh.connectivity());
        Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
            double sum_cjr_xr = 0;
            const auto& cell_nodes = cell_to_node_matrix[j];
    
            for (size_t R=0; R<cell_nodes.size(); ++R) {
              sum_cjr_xr += (xr[cell_nodes[R]], m_Cjr(j,R));
            }
            Vj[j] = inv_dimension * sum_cjr_xr;
          });
        m_Vj = Vj;
      }
    
      PASTIS_INLINE
      void _updateCjr() {
        if constexpr (dimension == 1) {
          // Cjr/njr/ljr are constant overtime
        }
        else if constexpr (dimension == 2) {
          const NodeValue<const Rd>& xr = m_mesh.xr();
          const auto& cell_to_node_matrix
              = m_mesh.connectivity().cellToNodeMatrix();
    
          {
            NodeValuePerCell<Rd> Cjr(m_mesh.connectivity());
            Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
                const auto& cell_nodes = cell_to_node_matrix[j];
                for (size_t R=0; R<cell_nodes.size(); ++R) {
                  int Rp1 = (R+1)%cell_nodes.size();
                  int Rm1 = (R+cell_nodes.size()-1)%cell_nodes.size();
                  Rd half_xrp_xrm = 0.5*(xr[cell_nodes[Rp1]]-xr[cell_nodes[Rm1]]);
                  Cjr(j,R) = Rd{-half_xrp_xrm[1], half_xrp_xrm[0]};
                }
              });
            m_Cjr = Cjr;
          }
    
          {
            NodeValuePerCell<double> ljr(m_mesh.connectivity());
            Kokkos::parallel_for(m_Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
                ljr[jr] = l2Norm(m_Cjr[jr]);
              });
            m_ljr = ljr;
          }
    
          {
            NodeValuePerCell<Rd> njr(m_mesh.connectivity());
            Kokkos::parallel_for(m_Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
                njr[jr] = (1./m_ljr[jr])*m_Cjr[jr];
              });
            m_njr = njr;
          }
        } else if (dimension ==3) {
          const NodeValue<const Rd>& xr = m_mesh.xr();
    
          NodeValuePerFace<Rd> Nlr(m_mesh.connectivity());
          const auto& face_to_node_matrix
              = m_mesh.connectivity().faceToNodeMatrix();
    
          Kokkos::parallel_for(m_mesh.numberOfFaces(), PASTIS_LAMBDA(const FaceId& l) {
              const auto& face_nodes = face_to_node_matrix[l];
              const size_t nb_nodes = face_nodes.size();
              std::vector<Rd> dxr(nb_nodes);
              for (size_t r=0; r<nb_nodes; ++r) {
                dxr[r]
                    = xr[face_nodes[(r+1)%nb_nodes]]
                    - xr[face_nodes[(r+nb_nodes-1)%nb_nodes]];
              }
              const double inv_12_nb_nodes = 1./(12.*nb_nodes);
              for (size_t r=0; r<nb_nodes; ++r) {
                Rd Nr = zero;
                const Rd two_dxr = 2*dxr[r];
                for (size_t s=0; s<nb_nodes; ++s) {
                  Nr += crossProduct((two_dxr - dxr[s]), xr[face_nodes[s]]);
                }
                Nr *= inv_12_nb_nodes;
                Nr -= (1./6.)*crossProduct(dxr[r], xr[face_nodes[r]]);
                Nlr(l,r) = Nr;
              }
            });
    
          const auto& cell_to_node_matrix
              = m_mesh.connectivity().cellToNodeMatrix();
    
          const auto& cell_to_face_matrix
              = m_mesh.connectivity().cellToFaceMatrix();
    
          const auto& cell_face_is_reversed = m_mesh.connectivity().cellFaceIsReversed();
    
          {
            NodeValuePerCell<Rd> Cjr(m_mesh.connectivity());
            Kokkos::parallel_for(Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
                Cjr[jr] = zero;
              });
    
            Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j) {
                const auto& cell_nodes = cell_to_node_matrix[j];
    
                const auto& cell_faces = cell_to_face_matrix[j];
                const auto& face_is_reversed = cell_face_is_reversed.itemValues(j);
    
                for (size_t L=0; L<cell_faces.size(); ++L) {
                  const FaceId& l = cell_faces[L];
                  const auto& face_nodes = face_to_node_matrix[l];
    
    #warning should this lambda be replaced by a precomputed correspondance?
                  std::function local_node_number_in_cell
                      = [&](const NodeId& node_number) {
                          for (size_t i_node=0; i_node<cell_nodes.size(); ++i_node) {
                            if (node_number == cell_nodes[i_node]) {
                              return i_node;
                              break;
                            }
                          }
                          return std::numeric_limits<size_t>::max();
                        };
    
                  if (face_is_reversed[L]) {
                    for (size_t rl = 0; rl<face_nodes.size(); ++rl) {
                      const size_t R = local_node_number_in_cell(face_nodes[rl]);
                      Cjr(j, R) -= Nlr(l,rl);
                    }
                  } else {
                    for (size_t rl = 0; rl<face_nodes.size(); ++rl) {
                      const size_t R = local_node_number_in_cell(face_nodes[rl]);
                      Cjr(j, R) += Nlr(l,rl);
                    }
                  }
                }
              });
    
            m_Cjr = Cjr;
          }
    
          {
            NodeValuePerCell<double> ljr(m_mesh.connectivity());
            Kokkos::parallel_for(m_Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
                ljr[jr] = l2Norm(m_Cjr[jr]);
              });
            m_ljr = ljr;
          }
    
          {
            NodeValuePerCell<Rd> njr(m_mesh.connectivity());
            Kokkos::parallel_for(m_Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
                njr[jr] = (1./m_ljr[jr])*m_Cjr[jr];
              });
            m_njr = njr;
          }
        }
        static_assert((dimension<=3), "only 1d, 2d and 3d are implemented");
      }
    
     public:
      const MeshType& mesh() const
      {
        return m_mesh;
      }
    
      const NodeValuePerCell<const Rd>& Cjr() const
      {
        return m_Cjr;
      }
    
      const NodeValuePerCell<const double>& ljr() const
      {
        return m_ljr;
      }
    
      const NodeValuePerCell<const Rd>& njr() const
      {
        return m_njr;
      }
    
      const CellValue<const Rd>& xj() const
      {
        return m_xj;
      }
    
      const CellValue<const double>& Vj() const
      {
        return m_Vj;
      }
    
      void updateAllData()
      {
        this->_updateCjr();
        this->_updateCenter();
        this->_updateVolume();
      }
    
      MeshData(const MeshType& mesh)
          : m_mesh(mesh)
      {
        if constexpr (dimension==1) {
          // in 1d Cjr are computed once for all
          {
            NodeValuePerCell<Rd> Cjr(m_mesh.connectivity());
            Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j) {
                Cjr(j,0)=-1;
                Cjr(j,1)= 1;
              });
            m_Cjr = Cjr;
          }
          // in 1d njr=Cjr (here performs a shallow copy)
          m_njr = m_Cjr;
          {
            NodeValuePerCell<double> ljr(m_mesh.connectivity());
            Kokkos::parallel_for(ljr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
                ljr[jr] = 1;
            });
            m_ljr = ljr;
          }
        }
        this->updateAllData();
      }
    
      ~MeshData()
      {
        ;
      }
    };
    
    #endif // MESH_DATA_HPP