Select Git revision
FiniteVolumesEulerUnknowns.hpp
MeshData.hpp 9.12 KiB
#ifndef MESH_DATA_HPP
#define MESH_DATA_HPP
#include <Kokkos_Core.hpp>
#include <TinyVector.hpp>
#include <ItemValue.hpp>
#include <SubItemValuePerItem.hpp>
#include <map>
template <typename M>
class MeshData
{
public:
typedef M MeshType;
static constexpr size_t dimension = MeshType::dimension;
static_assert(dimension>0, "dimension must be strictly positive");
typedef TinyVector<dimension> Rd;
static constexpr double inv_dimension = 1./dimension;
private:
const MeshType& m_mesh;
NodeValuePerCell<const Rd> m_Cjr;
NodeValuePerCell<const double> m_ljr;
NodeValuePerCell<const Rd> m_njr;
CellValue<const Rd> m_xj;
CellValue<const double> m_Vj;
KOKKOS_INLINE_FUNCTION
void _updateCenter()
{ // Computes vertices isobarycenter
if constexpr (dimension == 1) {
const NodeValue<const Rd>& xr = m_mesh.xr();
const auto& cell_to_node_matrix
= m_mesh.connectivity().getMatrix(ItemType::cell,
ItemType::node);
CellValue<Rd> xj(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
const auto& cell_nodes = cell_to_node_matrix.rowConst(j);
xj[j] = 0.5*(xr[cell_nodes(0)]+xr[cell_nodes(1)]);
});
m_xj = xj;
} else {
const NodeValue<const Rd>& xr = m_mesh.xr();
const CellValue<const double>& inv_cell_nb_nodes
= m_mesh.connectivity().invCellNbNodes();
const auto& cell_to_node_matrix
= m_mesh.connectivity().getMatrix(ItemType::cell,
ItemType::node);
CellValue<Rd> xj(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
Rd X = zero;
const auto& cell_nodes = cell_to_node_matrix.rowConst(j);
for (size_t R=0; R<cell_nodes.length; ++R) {
X += xr[cell_nodes(R)];
}
xj[j] = inv_cell_nb_nodes[j]*X;
});
m_xj = xj;
}
}
KOKKOS_INLINE_FUNCTION
void _updateVolume()
{
const NodeValue<const Rd>& xr = m_mesh.xr();
const auto& cell_to_node_matrix
= m_mesh.connectivity().getMatrix(ItemType::cell,
ItemType::node);
CellValue<double> Vj(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
double sum_cjr_xr = 0;
const auto& cell_nodes = cell_to_node_matrix.rowConst(j);
for (size_t R=0; R<cell_nodes.length; ++R) {
sum_cjr_xr += (xr[cell_nodes(R)], m_Cjr(j,R));
}
Vj[j] = inv_dimension * sum_cjr_xr;
});
m_Vj = Vj;
}
KOKKOS_INLINE_FUNCTION
void _updateCjr() {
if constexpr (dimension == 1) {
// Cjr/njr/ljr are constant overtime
}
else if constexpr (dimension == 2) {
const NodeValue<const Rd>& xr = m_mesh.xr();
const auto& cell_to_node_matrix
= m_mesh.connectivity().getMatrix(ItemType::cell,
ItemType::node);
{
NodeValuePerCell<Rd> Cjr(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
const auto& cell_nodes = cell_to_node_matrix.rowConst(j);
for (size_t R=0; R<cell_nodes.length; ++R) {
int Rp1 = (R+1)%cell_nodes.length;
int Rm1 = (R+cell_nodes.length-1)%cell_nodes.length;
Rd half_xrp_xrm = 0.5*(xr[cell_nodes(Rp1)]-xr[cell_nodes(Rm1)]);
Cjr(j,R) = Rd{-half_xrp_xrm[1], half_xrp_xrm[0]};
}
});
m_Cjr = Cjr;
}
{
NodeValuePerCell<double> ljr(m_mesh.connectivity());
Kokkos::parallel_for(m_Cjr.numberOfValues(), KOKKOS_LAMBDA(const int& j){
ljr[j] = l2Norm(m_Cjr[j]);
});
m_ljr = ljr;
}
{
NodeValuePerCell<Rd> njr(m_mesh.connectivity());
Kokkos::parallel_for(m_Cjr.numberOfValues(), KOKKOS_LAMBDA(const int& j){
njr[j] = (1./m_ljr[j])*m_Cjr[j];
});
m_njr = njr;
}
} else if (dimension ==3) {
const NodeValue<const Rd>& xr = m_mesh.xr();
NodeValuePerFace<Rd> Nlr(m_mesh.connectivity());
const auto& face_to_node_matrix
= m_mesh.connectivity().getMatrix(ItemType::face,
ItemType::node);
Kokkos::parallel_for(m_mesh.numberOfFaces(), KOKKOS_LAMBDA(const int& l) {
const auto& face_nodes = face_to_node_matrix.rowConst(l);
const size_t nb_nodes = face_nodes.length;
std::vector<Rd> dxr(nb_nodes);
for (size_t r=0; r<nb_nodes; ++r) {
dxr[r] = xr[face_nodes((r+1)%nb_nodes)] - xr[face_nodes((r+nb_nodes-1)%nb_nodes)];
}
const double inv_12_nb_nodes = 1./(12.*nb_nodes);
for (size_t r=0; r<nb_nodes; ++r) {
Rd Nr = zero;
const Rd two_dxr = 2*dxr[r];
for (size_t s=0; s<nb_nodes; ++s) {
Nr += crossProduct((two_dxr - dxr[s]), xr[face_nodes(s)]);
}
Nr *= inv_12_nb_nodes;
Nr -= (1./6.)*crossProduct(dxr[r], xr[face_nodes(r)]);
Nlr(l,r) = Nr;
}
});
const auto& cell_to_node_matrix
= m_mesh.connectivity().getMatrix(ItemType::cell,
ItemType::node);
const auto& cell_to_face_matrix
= m_mesh.connectivity().getMatrix(ItemType::cell,
ItemType::face);
const auto& cell_face_is_reversed = m_mesh.connectivity().cellFaceIsReversed();
{
NodeValuePerCell<Rd> Cjr(m_mesh.connectivity());
Kokkos::parallel_for(Cjr.numberOfValues(), KOKKOS_LAMBDA(const int& jr){
Cjr[jr] = zero;
});
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
const auto& cell_nodes = cell_to_node_matrix.rowConst(j);
const auto& cell_faces = cell_to_face_matrix.rowConst(j);
const auto& face_is_reversed = cell_face_is_reversed.itemValues(j);
for (size_t L=0; L<cell_faces.length; ++L) {
const size_t l = cell_faces(L);
const auto& face_nodes = face_to_node_matrix.rowConst(l);
#warning should this lambda be replaced by a precomputed correspondance?
std::function local_node_number_in_cell
= [&](const size_t& node_number) {
for (size_t i_node=0; i_node<cell_nodes.length; ++i_node) {
if (node_number == cell_nodes(i_node)) {
return i_node;
break;
}
}
return std::numeric_limits<size_t>::max();
};
if (face_is_reversed[L]) {
for (size_t rl = 0; rl<face_nodes.length; ++rl) {
const size_t R = local_node_number_in_cell(face_nodes(rl));
Cjr(j, R) -= Nlr(l,rl);
}
} else {
for (size_t rl = 0; rl<face_nodes.length; ++rl) {
const size_t R = local_node_number_in_cell(face_nodes(rl));
Cjr(j, R) += Nlr(l,rl);
}
}
}
});
m_Cjr = Cjr;
}
{
NodeValuePerCell<double> ljr(m_mesh.connectivity());
Kokkos::parallel_for(m_Cjr.numberOfValues(), KOKKOS_LAMBDA(const int& jr){
ljr[jr] = l2Norm(m_Cjr[jr]);
});
m_ljr = ljr;
}
{
NodeValuePerCell<Rd> njr(m_mesh.connectivity());
Kokkos::parallel_for(m_Cjr.numberOfValues(), KOKKOS_LAMBDA(const int& jr){
njr[jr] = (1./m_ljr[jr])*m_Cjr[jr];
});
m_njr = njr;
}
}
static_assert((dimension<=3), "only 1d, 2d and 3d are implemented");
}
public:
const MeshType& mesh() const
{
return m_mesh;
}
const NodeValuePerCell<const Rd>& Cjr() const
{
return m_Cjr;
}
const NodeValuePerCell<const double>& ljr() const
{
return m_ljr;
}
const NodeValuePerCell<const Rd>& njr() const
{
return m_njr;
}
const CellValue<const Rd>& xj() const
{
return m_xj;
}
const CellValue<const double>& Vj() const
{
return m_Vj;
}
void updateAllData()
{
this->_updateCjr();
this->_updateCenter();
this->_updateVolume();
}
MeshData(const MeshType& mesh)
: m_mesh(mesh)
{
if constexpr (dimension==1) {
// in 1d Cjr are computed once for all
{
NodeValuePerCell<Rd> Cjr(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
Cjr(j,0)=-1;
Cjr(j,1)= 1;
});
m_Cjr = Cjr;
}
// in 1d njr=Cjr (here performs a shallow copy)
m_njr = m_Cjr;
{
NodeValuePerCell<double> ljr(m_mesh.connectivity());
Kokkos::parallel_for(ljr.numberOfValues(), KOKKOS_LAMBDA(const int& jr){
ljr[jr] = 1;
});
m_ljr = ljr;
}
}
this->updateAllData();
}
~MeshData()
{
;
}
};
#endif // MESH_DATA_HPP