Select Git revision
SchemeModule.cpp
MeshData.hpp 8.65 KiB
#ifndef MESH_DATA_HPP
#define MESH_DATA_HPP
#include <Kokkos_Core.hpp>
#include <TinyVector.hpp>
#include <ItemValue.hpp>
#include <SubItemValuePerItem.hpp>
#include <map>
template <typename M>
class MeshData
{
public:
using MeshType = M;
static constexpr size_t dimension = MeshType::dimension;
static_assert(dimension>0, "dimension must be strictly positive");
using Rd = TinyVector<dimension>;
static constexpr double inv_dimension = 1./dimension;
private:
const MeshType& m_mesh;
NodeValuePerCell<const Rd> m_Cjr;
NodeValuePerCell<const double> m_ljr;
NodeValuePerCell<const Rd> m_njr;
CellValue<const Rd> m_xj;
CellValue<const double> m_Vj;
PASTIS_INLINE
void _updateCenter()
{ // Computes vertices isobarycenter
if constexpr (dimension == 1) {
const NodeValue<const Rd>& xr = m_mesh.xr();
const auto& cell_to_node_matrix
= m_mesh.connectivity().cellToNodeMatrix();
CellValue<Rd> xj(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
const auto& cell_nodes = cell_to_node_matrix[j];
xj[j] = 0.5*(xr[cell_nodes[0]]+xr[cell_nodes[1]]);
});
m_xj = xj;
} else {
const NodeValue<const Rd>& xr = m_mesh.xr();
const CellValue<const double>& inv_cell_nb_nodes
= m_mesh.connectivity().invCellNbNodes();
const auto& cell_to_node_matrix
= m_mesh.connectivity().cellToNodeMatrix();
CellValue<Rd> xj(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
Rd X = zero;
const auto& cell_nodes = cell_to_node_matrix[j];
for (size_t R=0; R<cell_nodes.size(); ++R) {
X += xr[cell_nodes[R]];
}
xj[j] = inv_cell_nb_nodes[j]*X;
});
m_xj = xj;
}
}
PASTIS_INLINE
void _updateVolume()
{
const NodeValue<const Rd>& xr = m_mesh.xr();
const auto& cell_to_node_matrix
= m_mesh.connectivity().cellToNodeMatrix();
CellValue<double> Vj(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
double sum_cjr_xr = 0;
const auto& cell_nodes = cell_to_node_matrix[j];
for (size_t R=0; R<cell_nodes.size(); ++R) {
sum_cjr_xr += (xr[cell_nodes[R]], m_Cjr(j,R));
}
Vj[j] = inv_dimension * sum_cjr_xr;
});
m_Vj = Vj;
}
PASTIS_INLINE
void _updateCjr() {
if constexpr (dimension == 1) {
// Cjr/njr/ljr are constant overtime
}
else if constexpr (dimension == 2) {
const NodeValue<const Rd>& xr = m_mesh.xr();
const auto& cell_to_node_matrix
= m_mesh.connectivity().cellToNodeMatrix();
{
NodeValuePerCell<Rd> Cjr(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j){
const auto& cell_nodes = cell_to_node_matrix[j];
for (size_t R=0; R<cell_nodes.size(); ++R) {
int Rp1 = (R+1)%cell_nodes.size();
int Rm1 = (R+cell_nodes.size()-1)%cell_nodes.size();
Rd half_xrp_xrm = 0.5*(xr[cell_nodes[Rp1]]-xr[cell_nodes[Rm1]]);
Cjr(j,R) = Rd{-half_xrp_xrm[1], half_xrp_xrm[0]};
}
});
m_Cjr = Cjr;
}
{
NodeValuePerCell<double> ljr(m_mesh.connectivity());
Kokkos::parallel_for(m_Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
ljr[jr] = l2Norm(m_Cjr[jr]);
});
m_ljr = ljr;
}
{
NodeValuePerCell<Rd> njr(m_mesh.connectivity());
Kokkos::parallel_for(m_Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
njr[jr] = (1./m_ljr[jr])*m_Cjr[jr];
});
m_njr = njr;
}
} else if (dimension ==3) {
const NodeValue<const Rd>& xr = m_mesh.xr();
NodeValuePerFace<Rd> Nlr(m_mesh.connectivity());
const auto& face_to_node_matrix
= m_mesh.connectivity().faceToNodeMatrix();
Kokkos::parallel_for(m_mesh.numberOfFaces(), PASTIS_LAMBDA(const FaceId& l) {
const auto& face_nodes = face_to_node_matrix[l];
const size_t nb_nodes = face_nodes.size();
std::vector<Rd> dxr(nb_nodes);
for (size_t r=0; r<nb_nodes; ++r) {
dxr[r]
= xr[face_nodes[(r+1)%nb_nodes]]
- xr[face_nodes[(r+nb_nodes-1)%nb_nodes]];
}
const double inv_12_nb_nodes = 1./(12.*nb_nodes);
for (size_t r=0; r<nb_nodes; ++r) {
Rd Nr = zero;
const Rd two_dxr = 2*dxr[r];
for (size_t s=0; s<nb_nodes; ++s) {
Nr += crossProduct((two_dxr - dxr[s]), xr[face_nodes[s]]);
}
Nr *= inv_12_nb_nodes;
Nr -= (1./6.)*crossProduct(dxr[r], xr[face_nodes[r]]);
Nlr(l,r) = Nr;
}
});
const auto& cell_to_node_matrix
= m_mesh.connectivity().cellToNodeMatrix();
const auto& cell_to_face_matrix
= m_mesh.connectivity().cellToFaceMatrix();
const auto& cell_face_is_reversed = m_mesh.connectivity().cellFaceIsReversed();
{
NodeValuePerCell<Rd> Cjr(m_mesh.connectivity());
Kokkos::parallel_for(Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
Cjr[jr] = zero;
});
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j) {
const auto& cell_nodes = cell_to_node_matrix[j];
const auto& cell_faces = cell_to_face_matrix[j];
const auto& face_is_reversed = cell_face_is_reversed.itemValues(j);
for (size_t L=0; L<cell_faces.size(); ++L) {
const FaceId& l = cell_faces[L];
const auto& face_nodes = face_to_node_matrix[l];
#warning should this lambda be replaced by a precomputed correspondance?
std::function local_node_number_in_cell
= [&](const NodeId& node_number) {
for (size_t i_node=0; i_node<cell_nodes.size(); ++i_node) {
if (node_number == cell_nodes[i_node]) {
return i_node;
break;
}
}
return std::numeric_limits<size_t>::max();
};
if (face_is_reversed[L]) {
for (size_t rl = 0; rl<face_nodes.size(); ++rl) {
const size_t R = local_node_number_in_cell(face_nodes[rl]);
Cjr(j, R) -= Nlr(l,rl);
}
} else {
for (size_t rl = 0; rl<face_nodes.size(); ++rl) {
const size_t R = local_node_number_in_cell(face_nodes[rl]);
Cjr(j, R) += Nlr(l,rl);
}
}
}
});
m_Cjr = Cjr;
}
{
NodeValuePerCell<double> ljr(m_mesh.connectivity());
Kokkos::parallel_for(m_Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
ljr[jr] = l2Norm(m_Cjr[jr]);
});
m_ljr = ljr;
}
{
NodeValuePerCell<Rd> njr(m_mesh.connectivity());
Kokkos::parallel_for(m_Cjr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
njr[jr] = (1./m_ljr[jr])*m_Cjr[jr];
});
m_njr = njr;
}
}
static_assert((dimension<=3), "only 1d, 2d and 3d are implemented");
}
public:
const MeshType& mesh() const
{
return m_mesh;
}
const NodeValuePerCell<const Rd>& Cjr() const
{
return m_Cjr;
}
const NodeValuePerCell<const double>& ljr() const
{
return m_ljr;
}
const NodeValuePerCell<const Rd>& njr() const
{
return m_njr;
}
const CellValue<const Rd>& xj() const
{
return m_xj;
}
const CellValue<const double>& Vj() const
{
return m_Vj;
}
void updateAllData()
{
this->_updateCjr();
this->_updateCenter();
this->_updateVolume();
}
MeshData(const MeshType& mesh)
: m_mesh(mesh)
{
if constexpr (dimension==1) {
// in 1d Cjr are computed once for all
{
NodeValuePerCell<Rd> Cjr(m_mesh.connectivity());
Kokkos::parallel_for(m_mesh.numberOfCells(), PASTIS_LAMBDA(const CellId& j) {
Cjr(j,0)=-1;
Cjr(j,1)= 1;
});
m_Cjr = Cjr;
}
// in 1d njr=Cjr (here performs a shallow copy)
m_njr = m_Cjr;
{
NodeValuePerCell<double> ljr(m_mesh.connectivity());
Kokkos::parallel_for(ljr.numberOfValues(), PASTIS_LAMBDA(const size_t& jr){
ljr[jr] = 1;
});
m_ljr = ljr;
}
}
this->updateAllData();
}
~MeshData()
{
;
}
};
#endif // MESH_DATA_HPP