Select Git revision
main.cpp 10.33 KiB
#include <iostream>
#include <Kokkos_Core.hpp>
#include <RevisionInfo.hpp>
#include <rang.hpp>
#include <FPEManager.hpp>
#include <SignalManager.hpp>
#include <ConsoleManager.hpp>
// #include <RawKokkosAcousticSolver.hpp>
// #include <MeshLessAcousticSolver.hpp>
// #include <AcousticSolverClass.hpp>
// #include <AcousticSolverTest.hpp>
#include <Connectivity1D.hpp>
#include <Mesh.hpp>
#include <BoundaryCondition.hpp>
#include <AcousticSolver.hpp>
#include <TinyVector.hpp>
#include <TinyMatrix.hpp>
#include <GmshReader.hpp>
#include <CLI/CLI.hpp>
#include <cassert>
#include <limits>
#include <map>
int main(int argc, char *argv[])
{
long unsigned number = 10;
std::string filename;
{
CLI::App app{"Pastis help"};
app.add_option("number,-n,--number", number, "Number of cells");//->required();
app.add_option("filename,-f,--filename", filename, "gmsh file");//->required();
int threads=-1;
app.add_option("--threads", threads, "Number of Kokkos threads")->check(CLI::Range(1,std::numeric_limits<decltype(threads)>::max()));
std::string colorize="auto";
app.add_set("--colorize", colorize, {"auto", "yes", "no"}, "Colorize console output", true);
bool disable_fpe = false;
app.add_flag("--no-fpe", disable_fpe, "Do not trap floating point exceptions");
bool disable_signals = false;
app.add_flag("--no-signal", disable_signals, "Do not catches signals");
std::string pause_on_error="auto";
app.add_set("--pause-on-error", pause_on_error, {"auto", "yes", "no"}, "Pause for debugging on unexpected error", true);
std::atexit([](){std::cout << rang::style::reset;});
try {
app.parse(argc, argv);
} catch (const CLI::ParseError &e) {
return app.exit(e);
}
ConsoleManager::init(colorize);
FPEManager::init(not disable_fpe);
SignalManager::setPauseForDebug(pause_on_error);
SignalManager::init(not disable_signals);
}
std::cout << "Code version: "
<< rang::style::bold << RevisionInfo::version() << rang::style::reset << '\n';
std::cout << "-------------------- "
<< rang::fg::green
<< "git info"
<< rang::fg::reset
<<" -------------------------"
<< '\n';
std::cout << "tag: " << rang::fg::reset
<< rang::style::bold << RevisionInfo::gitTag() << rang::style::reset << '\n';
std::cout << "HEAD: " << rang::style::bold << RevisionInfo::gitHead() << rang::style::reset << '\n';
std::cout << "hash: " << rang::style::bold << RevisionInfo::gitHash() << rang::style::reset << " (";
if (RevisionInfo::gitIsClean()) {
std::cout << rang::fgB::green << "clean" << rang::fg::reset;
} else {
std::cout << rang::fgB::red << "dirty" << rang::fg::reset;
}
std::cout << ")\n";
std::cout << "-------------------------------------------------------\n";
Kokkos::initialize(argc, argv);
Kokkos::DefaultExecutionSpace::print_configuration(std::cout);
std::map<std::string, double> method_cost_map;
// { // Basic function based acoustic solver
// Kokkos::Timer timer;
// timer.reset();
// RawKokkos::AcousticSolver(number);
// method_cost_map["RawKokkos"] = timer.seconds();
// }
// { // class for acoustic solver (mesh less)
// Kokkos::Timer timer;
// timer.reset();
// MeshLessAcousticSolver acoustic_solver(number);
// method_cost_map["MeshLessAcousticSolver"] = timer.seconds();
// }
// { // class for acoustic solver
// Kokkos::Timer timer;
// timer.reset();
// AcousticSolverClass acoustic_solver(number);
// method_cost_map["AcousticSolverClass"] = timer.seconds();
// }
// { // class for acoustic solver test
// Kokkos::Timer timer;
// timer.reset();
// AcousticSolverTest acoustic_solver(number);
// method_cost_map["AcousticSolverTest"] = timer.seconds();
// }
if (filename != "") {
std::cout << "Reading (gmsh) " << rang::style::underline << filename << rang::style::reset << " ...\n";
GmshReader gmsh_reader(filename);
typedef Mesh<Connectivity2D> MeshType;
typedef MeshData<MeshType> MeshDataType;
typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType;
MeshType& mesh = gmsh_reader.mesh();
Kokkos::Timer timer;
timer.reset();
MeshDataType mesh_data(mesh);
std::vector<BoundaryConditionHandler> bc_list;
{ // quite dirty!
for (size_t i_boundary=0; i_boundary<mesh.connectivity().numberOfNodeBoundaries(); ++i_boundary) {
Connectivity2D::NodesBoundary nodes_boundary = mesh.connectivity().nodesBoundary(i_boundary);
std::cout << i_boundary
<< " -> "
<< mesh.connectivity().nodesBoundary(i_boundary).second.extent(0)
<< '\n';
unsigned int ref = nodes_boundary.first;
TinyVector<2> normal(0,0);
if ((ref == 3) or (ref == 4)) {
normal = TinyVector<2>(0,1);
} else {
normal = TinyVector<2>(1,0);
}
std::cout << "boundary=" << i_boundary << " ref=" << ref << " n=" << normal << '\n';
const Kokkos::View<const unsigned int*> nodes_ids = nodes_boundary.second;
std::vector<unsigned int> node_boundary_vector(nodes_ids.extent(0));
for (size_t r=0; r<nodes_ids.extent(0); ++r) {
node_boundary_vector[r] = nodes_ids[r];
}
SymmetryBoundaryCondition<MeshType::dimension>* sym_bc
= new SymmetryBoundaryCondition<MeshType::dimension>(node_boundary_vector, normal);
std::shared_ptr<SymmetryBoundaryCondition<MeshType::dimension>> bc(sym_bc);
bc_list.push_back(BoundaryConditionHandler(bc));
}
// PressureBoundaryCondition* pres_bc1
// = new PressureBoundaryCondition(0.1,
// std::vector<unsigned int>({static_cast<unsigned int>(mesh.numberOfCells())}));
// std::shared_ptr<PressureBoundaryCondition> bc1(pres_bc1);
// bc_list.push_back(BoundaryConditionHandler(bc1));
}
UnknownsType unknowns(mesh_data);
unknowns.initializeSod();
AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns, bc_list);
typedef TinyVector<MeshType::dimension> Rd;
const Kokkos::View<const double*> Vj = mesh_data.Vj();
const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();
const double tmax=0.2;
double t=0;
int itermax=std::numeric_limits<int>::max();
int iteration=0;
Kokkos::View<double*> rhoj = unknowns.rhoj();
Kokkos::View<double*> ej = unknowns.ej();
Kokkos::View<double*> pj = unknowns.pj();
Kokkos::View<double*> gammaj = unknowns.gammaj();
Kokkos::View<double*> cj = unknowns.cj();
BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
while((t<tmax) and (iteration<itermax)) {
double dt = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
if (t+dt>tmax) {
dt=tmax-t;
}
acoustic_solver.computeNextStep(t,dt, unknowns);
block_eos.updatePandCFromRhoE();
t += dt;
++iteration;
}
std::ofstream gnuplot("sol.gnu");
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
for (int r=0; r<3; ++r) {
const Rd& x = mesh.xr()[mesh.connectivity().cellNodes()(j,r)];
gnuplot << x[0] << ' ' << x[1] << '\n';
}
const Rd& x = mesh.xr()[mesh.connectivity().cellNodes()(j,0)];
gnuplot << x[0] << ' ' << x[1] << "\n\n";
}
gnuplot.close();
std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
<< ": " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
} else {
// class for acoustic solver test
Kokkos::Timer timer;
timer.reset();
Connectivity1D connectivity(number);
typedef Mesh<Connectivity1D> MeshType;
typedef MeshData<MeshType> MeshDataType;
typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType;
MeshType mesh(connectivity);
MeshDataType mesh_data(mesh);
std::vector<BoundaryConditionHandler> bc_list;
{ // quite dirty!
SymmetryBoundaryCondition<MeshType::dimension>* sym_bc0
= new SymmetryBoundaryCondition<MeshType::dimension>(std::vector<unsigned int>({0u}),
TinyVector<1>(-1));
std::shared_ptr<SymmetryBoundaryCondition<1>> bc0(sym_bc0);
bc_list.push_back(BoundaryConditionHandler(bc0));
PressureBoundaryCondition* pres_bc1
= new PressureBoundaryCondition(0.1,
std::vector<unsigned int>({static_cast<unsigned int>(mesh.numberOfCells())}));
std::shared_ptr<PressureBoundaryCondition> bc1(pres_bc1);
bc_list.push_back(BoundaryConditionHandler(bc1));
}
UnknownsType unknowns(mesh_data);
unknowns.initializeSod();
AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns, bc_list);
typedef TinyVector<MeshType::dimension> Rd;
const Kokkos::View<const double*> Vj = mesh_data.Vj();
const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();
const double tmax=0.2;
double t=0;
int itermax=std::numeric_limits<int>::max();
int iteration=0;
Kokkos::View<double*> rhoj = unknowns.rhoj();
Kokkos::View<double*> ej = unknowns.ej();
Kokkos::View<double*> pj = unknowns.pj();
Kokkos::View<double*> gammaj = unknowns.gammaj();
Kokkos::View<double*> cj = unknowns.cj();
BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
while((t<tmax) and (iteration<itermax)) {
double dt = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
if (t+dt>tmax) {
dt=tmax-t;
}
acoustic_solver.computeNextStep(t,dt, unknowns);
block_eos.updatePandCFromRhoE();
t += dt;
++iteration;
}
std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
<< ": " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
{ // gnuplot output for density
const Kokkos::View<const Rd*> xj = mesh_data.xj();
const Kokkos::View<const double*> rhoj = unknowns.rhoj();
std::ofstream fout("rho");
for (size_t j=0; j<mesh.numberOfCells(); ++j) {
fout << xj[j][0] << ' ' << rhoj[j] << '\n';
}
}
}
Kokkos::finalize();
std::string::size_type size=0;
for (const auto& method_cost : method_cost_map) {
size = std::max(size, method_cost.first.size());
}
for (const auto& method_cost : method_cost_map) {
std::cout << "* ["
<< rang::fgB::cyan
<< std::setw(size) << std::left
<< method_cost.first
<< rang::fg::reset
<< "] Execution time: "
<< rang::style::bold
<< method_cost.second
<< rang::style::reset << '\n';
}
return 0;
}