Skip to content
Snippets Groups Projects
Select Git revision
  • 3214cbe5e0379fed258afbf798b52c274669ab82
  • develop default protected
  • feature/variational-hydro
  • origin/stage/bouguettaia
  • feature/gmsh-reader
  • feature/reconstruction
  • save_clemence
  • feature/kinetic-schemes
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

MeshData.hpp

Blame
  • MeshData.hpp 7.97 KiB
    #ifndef MESH_DATA_HPP
    #define MESH_DATA_HPP
    
    #include <Kokkos_Core.hpp>
    #include <TinyVector.hpp>
    
    #include <map>
    
    template <typename M>
    class MeshData
    {
    public:
      typedef M MeshType;
    
      static constexpr size_t dimension = MeshType::dimension;
      static_assert(dimension>0, "dimension must be strictly positive");
    
      typedef TinyVector<dimension> Rd;
    
      static constexpr double inv_dimension = 1./dimension;
    
    private:
      const MeshType& m_mesh;
      Kokkos::View<Rd**> m_Cjr;
      Kokkos::View<double**>  m_ljr;
      Kokkos::View<Rd**> m_njr;
      Kokkos::View<Rd*>  m_xj;
      Kokkos::View<double*>   m_Vj;
    
      KOKKOS_INLINE_FUNCTION
      void _updateCenter()
      { // Computes vertices isobarycenter
        if(dimension == 1) {
          const Kokkos::View<const Rd*> xr = m_mesh.xr();
          const Kokkos::View<const unsigned int**>& cell_nodes
    	= m_mesh.connectivity().cellNodes();
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	  m_xj[j] = 0.5*(xr[cell_nodes(j,0)]+xr[cell_nodes(j,1)]);
    	});
        } else {
          const Kokkos::View<const Rd*> xr = m_mesh.xr();
          const Kokkos::View<const unsigned int**>& cell_nodes
    	= m_mesh.connectivity().cellNodes();
          const Kokkos::View<const unsigned short*>& cell_nb_nodes
    	= m_mesh.connectivity().cellNbNodes();
          const Kokkos::View<const double*>& inv_cell_nb_nodes
    	= m_mesh.connectivity().invCellNbNodes();
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
    	  Rd X = zero;
    	  for (int R=0; R<cell_nb_nodes[j]; ++R) {
    	   X += xr[cell_nodes(j,R)];
    	  }
    	  m_xj[j] = inv_cell_nb_nodes[j]*X;
    	});
        }
      }
    
      KOKKOS_INLINE_FUNCTION
      void _updateVolume()
      {
        const Kokkos::View<const unsigned int**>& cell_nodes
          = m_mesh.connectivity().cellNodes();
        const Kokkos::View<const unsigned short*> cell_nb_nodes
          = m_mesh.connectivity().cellNbNodes();
    
        const Kokkos::View<const Rd*> xr = m_mesh.xr();
    
        Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
            double sum_cjr_xr = 0;
            for (int R=0; R<cell_nb_nodes[j]; ++R) {
              sum_cjr_xr += (xr[cell_nodes(j,R)], m_Cjr(j,R));
            }
            m_Vj[j] = inv_dimension * sum_cjr_xr;
          });
      }
    
      KOKKOS_INLINE_FUNCTION
      void _updateCjr() {
        if constexpr (dimension == 1) {
          // Cjr/njr/ljr are constant overtime
          }
        else if constexpr (dimension == 2) {
          const Kokkos::View<const unsigned int**>& cell_nodes
              = m_mesh.connectivity().cellNodes();
          const Kokkos::View<const unsigned short*> cell_nb_nodes
              = m_mesh.connectivity().cellNbNodes();
    
          const Kokkos::View<const Rd*> xr = m_mesh.xr();
    
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
              for (int R=0; R<cell_nb_nodes[j]; ++R) {
                int Rp1 = (R+1)%cell_nb_nodes[j];
                int Rm1 = (R+cell_nb_nodes[j]-1)%cell_nb_nodes[j];
                Rd half_xrp_xrm = 0.5*(xr(cell_nodes(j,Rp1))-xr(cell_nodes(j,Rm1)));
                m_Cjr(j,R) = Rd{-half_xrp_xrm[1], half_xrp_xrm[0]};
              }
            });
    
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
              for (int R=0; R<cell_nb_nodes[j]; ++R) {
                const Rd& Cjr = m_Cjr(j,R);
                m_ljr(j,R) = l2Norm(Cjr);
              }
            });
    
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
              for (int R=0; R<cell_nb_nodes[j]; ++R) {
                const Rd& Cjr = m_Cjr(j,R);
                const double inv_ljr = 1./m_ljr(j,R);
                m_njr(j,R) = inv_ljr*Cjr;
              }
            });
        } else if (dimension ==3) {
          const Kokkos::View<const unsigned int**>& cell_nodes
              = m_mesh.connectivity().cellNodes();
          const Kokkos::View<const unsigned short*> cell_nb_nodes
              = m_mesh.connectivity().cellNbNodes();
    
          const Kokkos::View<const Rd*> xr = m_mesh.xr();
    
          Kokkos::View<Rd**> Nlr("Nlr", m_mesh.connectivity().numberOfFaces(), m_mesh.connectivity().maxNbNodePerFace());
    
          Kokkos::parallel_for(m_mesh.numberOfFaces(), KOKKOS_LAMBDA(const int& l) {
              const auto& face_nodes = m_mesh.connectivity().m_face_to_node_matrix.rowConst(l);
              const size_t nb_nodes = face_nodes.length;
              std::vector<Rd> dxr(nb_nodes);
              for (size_t r=0; r<nb_nodes; ++r) {
                dxr[r] = xr[face_nodes((r+1)%nb_nodes)] - xr[face_nodes((r+nb_nodes-1)%nb_nodes)];
              }
              const double inv_12_nb_nodes = 1./(12.*nb_nodes);
              for (size_t r=0; r<nb_nodes; ++r) {
                Rd Nr = zero;
                const Rd two_dxr = 2*dxr[r];
                for (size_t s=0; s<nb_nodes; ++s) {
                  Nr += crossProduct((two_dxr - dxr[s]), xr[face_nodes(s)]);
                }
                Nr *= inv_12_nb_nodes;
                Nr -= (1./6.)*crossProduct(dxr[r], xr[face_nodes(r)]);
                Nlr(l,r) = Nr;
              }
            });
    
          const Kokkos::View<const unsigned int**> cell_faces
              = m_mesh.connectivity().cellFaces();
          const Kokkos::View<const bool**> cell_faces_is_reversed
              = m_mesh.connectivity().cellFacesIsReversed();
    
          const Kokkos::View<const unsigned short*> cell_nb_faces
              = m_mesh.connectivity().cellNbFaces();
    
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
              for (int R=0; R<cell_nb_nodes[j]; ++R) {
                m_Cjr(j,R) = zero;
              }
              std::map<unsigned int, unsigned short> node_id_to_local;
              for (size_t R=0; R<cell_nb_nodes[j]; ++R) {
                node_id_to_local[cell_nodes(j,R)] = R;
              }
              for (size_t L=0; L<cell_nb_faces[j]; ++L) {
                const size_t l = cell_faces(j, L);
                const auto& face_nodes = m_mesh.connectivity().m_face_to_node_matrix.rowConst(l);
                if (cell_faces_is_reversed(j, L)) {
                  for (size_t rl = 0; rl<face_nodes.length; ++rl) {
                    m_Cjr(j, node_id_to_local[face_nodes(rl)]) -= Nlr(l,rl);
                  }
                } else {
                  for (size_t rl = 0; rl<face_nodes.length; ++rl) {
                    m_Cjr(j, node_id_to_local[face_nodes(rl)]) += Nlr(l, rl);
                  }
                }
              }
            });
    
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
              for (int R=0; R<cell_nb_nodes[j]; ++R) {
                const Rd& Cjr = m_Cjr(j,R);
                m_ljr(j,R) = l2Norm(Cjr);
              }
            });
    
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
              for (int R=0; R<cell_nb_nodes[j]; ++R) {
                const Rd& Cjr = m_Cjr(j,R);
                const double inv_ljr = 1./m_ljr(j,R);
                m_njr(j,R) = inv_ljr*Cjr;
              }
            });
        }
        static_assert((dimension<=3), "only 1d, 2d and 3d are implemented");
      }
    
    public:
      const MeshType& mesh() const
      {
        return m_mesh;
      }
    
      const Kokkos::View<const Rd**> Cjr() const
      {
        return m_Cjr;
      }
    
      const Kokkos::View<const double**> ljr() const
      {
        return m_ljr;
      }
    
      const Kokkos::View<const Rd**> njr() const
      {
        return m_njr;
      }
    
      const Kokkos::View<const Rd*> xj() const
      {
        return m_xj;
      }
    
      const Kokkos::View<const double*> Vj() const
      {
        return m_Vj;
      }
    
      void updateAllData()
      {
        this->_updateCjr();
        this->_updateCenter();
        this->_updateVolume();
      }
    
      MeshData(const MeshType& mesh)
        : m_mesh(mesh),
          m_Cjr("Cjr", mesh.numberOfCells(), mesh.connectivity().maxNbNodePerCell()),
          m_ljr("ljr", mesh.numberOfCells(), mesh.connectivity().maxNbNodePerCell()),
          m_njr("njr", mesh.numberOfCells(), mesh.connectivity().maxNbNodePerCell()),
          m_xj("xj", mesh.numberOfCells()),
          m_Vj("Vj", mesh.numberOfCells())
      {
        if constexpr (dimension==1) {
          // in 1d Cjr are computed once for all
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	  m_Cjr(j,0)=-1;
    	  m_Cjr(j,1)= 1;
    	});
          // in 1d njr=Cjr
          m_njr=m_Cjr;
          Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
    	  m_ljr(j,0)= 1;
    	  m_ljr(j,1)= 1;
    	});
        }
        this->updateAllData();
      }
    
      ~MeshData()
      {
        ;
      }
    };
    
    #endif // MESH_DATA_HPP