Select Git revision
MeshData.hpp
Stéphane Del Pino authored
MeshData.hpp 7.97 KiB
#ifndef MESH_DATA_HPP
#define MESH_DATA_HPP
#include <Kokkos_Core.hpp>
#include <TinyVector.hpp>
#include <map>
template <typename M>
class MeshData
{
public:
typedef M MeshType;
static constexpr size_t dimension = MeshType::dimension;
static_assert(dimension>0, "dimension must be strictly positive");
typedef TinyVector<dimension> Rd;
static constexpr double inv_dimension = 1./dimension;
private:
const MeshType& m_mesh;
Kokkos::View<Rd**> m_Cjr;
Kokkos::View<double**> m_ljr;
Kokkos::View<Rd**> m_njr;
Kokkos::View<Rd*> m_xj;
Kokkos::View<double*> m_Vj;
KOKKOS_INLINE_FUNCTION
void _updateCenter()
{ // Computes vertices isobarycenter
if(dimension == 1) {
const Kokkos::View<const Rd*> xr = m_mesh.xr();
const Kokkos::View<const unsigned int**>& cell_nodes
= m_mesh.connectivity().cellNodes();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
m_xj[j] = 0.5*(xr[cell_nodes(j,0)]+xr[cell_nodes(j,1)]);
});
} else {
const Kokkos::View<const Rd*> xr = m_mesh.xr();
const Kokkos::View<const unsigned int**>& cell_nodes
= m_mesh.connectivity().cellNodes();
const Kokkos::View<const unsigned short*>& cell_nb_nodes
= m_mesh.connectivity().cellNbNodes();
const Kokkos::View<const double*>& inv_cell_nb_nodes
= m_mesh.connectivity().invCellNbNodes();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
Rd X = zero;
for (int R=0; R<cell_nb_nodes[j]; ++R) {
X += xr[cell_nodes(j,R)];
}
m_xj[j] = inv_cell_nb_nodes[j]*X;
});
}
}
KOKKOS_INLINE_FUNCTION
void _updateVolume()
{
const Kokkos::View<const unsigned int**>& cell_nodes
= m_mesh.connectivity().cellNodes();
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_mesh.connectivity().cellNbNodes();
const Kokkos::View<const Rd*> xr = m_mesh.xr();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
double sum_cjr_xr = 0;
for (int R=0; R<cell_nb_nodes[j]; ++R) {
sum_cjr_xr += (xr[cell_nodes(j,R)], m_Cjr(j,R));
}
m_Vj[j] = inv_dimension * sum_cjr_xr;
});
}
KOKKOS_INLINE_FUNCTION
void _updateCjr() {
if constexpr (dimension == 1) {
// Cjr/njr/ljr are constant overtime
}
else if constexpr (dimension == 2) {
const Kokkos::View<const unsigned int**>& cell_nodes
= m_mesh.connectivity().cellNodes();
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_mesh.connectivity().cellNbNodes();
const Kokkos::View<const Rd*> xr = m_mesh.xr();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
for (int R=0; R<cell_nb_nodes[j]; ++R) {
int Rp1 = (R+1)%cell_nb_nodes[j];
int Rm1 = (R+cell_nb_nodes[j]-1)%cell_nb_nodes[j];
Rd half_xrp_xrm = 0.5*(xr(cell_nodes(j,Rp1))-xr(cell_nodes(j,Rm1)));
m_Cjr(j,R) = Rd{-half_xrp_xrm[1], half_xrp_xrm[0]};
}
});
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
for (int R=0; R<cell_nb_nodes[j]; ++R) {
const Rd& Cjr = m_Cjr(j,R);
m_ljr(j,R) = l2Norm(Cjr);
}
});
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j){
for (int R=0; R<cell_nb_nodes[j]; ++R) {
const Rd& Cjr = m_Cjr(j,R);
const double inv_ljr = 1./m_ljr(j,R);
m_njr(j,R) = inv_ljr*Cjr;
}
});
} else if (dimension ==3) {
const Kokkos::View<const unsigned int**>& cell_nodes
= m_mesh.connectivity().cellNodes();
const Kokkos::View<const unsigned short*> cell_nb_nodes
= m_mesh.connectivity().cellNbNodes();
const Kokkos::View<const Rd*> xr = m_mesh.xr();
Kokkos::View<Rd**> Nlr("Nlr", m_mesh.connectivity().numberOfFaces(), m_mesh.connectivity().maxNbNodePerFace());
Kokkos::parallel_for(m_mesh.numberOfFaces(), KOKKOS_LAMBDA(const int& l) {
const auto& face_nodes = m_mesh.connectivity().m_face_to_node_matrix.rowConst(l);
const size_t nb_nodes = face_nodes.length;
std::vector<Rd> dxr(nb_nodes);
for (size_t r=0; r<nb_nodes; ++r) {
dxr[r] = xr[face_nodes((r+1)%nb_nodes)] - xr[face_nodes((r+nb_nodes-1)%nb_nodes)];
}
const double inv_12_nb_nodes = 1./(12.*nb_nodes);
for (size_t r=0; r<nb_nodes; ++r) {
Rd Nr = zero;
const Rd two_dxr = 2*dxr[r];
for (size_t s=0; s<nb_nodes; ++s) {
Nr += crossProduct((two_dxr - dxr[s]), xr[face_nodes(s)]);
}
Nr *= inv_12_nb_nodes;
Nr -= (1./6.)*crossProduct(dxr[r], xr[face_nodes(r)]);
Nlr(l,r) = Nr;
}
});
const Kokkos::View<const unsigned int**> cell_faces
= m_mesh.connectivity().cellFaces();
const Kokkos::View<const bool**> cell_faces_is_reversed
= m_mesh.connectivity().cellFacesIsReversed();
const Kokkos::View<const unsigned short*> cell_nb_faces
= m_mesh.connectivity().cellNbFaces();
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
for (int R=0; R<cell_nb_nodes[j]; ++R) {
m_Cjr(j,R) = zero;
}
std::map<unsigned int, unsigned short> node_id_to_local;
for (size_t R=0; R<cell_nb_nodes[j]; ++R) {
node_id_to_local[cell_nodes(j,R)] = R;
}
for (size_t L=0; L<cell_nb_faces[j]; ++L) {
const size_t l = cell_faces(j, L);
const auto& face_nodes = m_mesh.connectivity().m_face_to_node_matrix.rowConst(l);
if (cell_faces_is_reversed(j, L)) {
for (size_t rl = 0; rl<face_nodes.length; ++rl) {
m_Cjr(j, node_id_to_local[face_nodes(rl)]) -= Nlr(l,rl);
}
} else {
for (size_t rl = 0; rl<face_nodes.length; ++rl) {
m_Cjr(j, node_id_to_local[face_nodes(rl)]) += Nlr(l, rl);
}
}
}
});
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
for (int R=0; R<cell_nb_nodes[j]; ++R) {
const Rd& Cjr = m_Cjr(j,R);
m_ljr(j,R) = l2Norm(Cjr);
}
});
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
for (int R=0; R<cell_nb_nodes[j]; ++R) {
const Rd& Cjr = m_Cjr(j,R);
const double inv_ljr = 1./m_ljr(j,R);
m_njr(j,R) = inv_ljr*Cjr;
}
});
}
static_assert((dimension<=3), "only 1d, 2d and 3d are implemented");
}
public:
const MeshType& mesh() const
{
return m_mesh;
}
const Kokkos::View<const Rd**> Cjr() const
{
return m_Cjr;
}
const Kokkos::View<const double**> ljr() const
{
return m_ljr;
}
const Kokkos::View<const Rd**> njr() const
{
return m_njr;
}
const Kokkos::View<const Rd*> xj() const
{
return m_xj;
}
const Kokkos::View<const double*> Vj() const
{
return m_Vj;
}
void updateAllData()
{
this->_updateCjr();
this->_updateCenter();
this->_updateVolume();
}
MeshData(const MeshType& mesh)
: m_mesh(mesh),
m_Cjr("Cjr", mesh.numberOfCells(), mesh.connectivity().maxNbNodePerCell()),
m_ljr("ljr", mesh.numberOfCells(), mesh.connectivity().maxNbNodePerCell()),
m_njr("njr", mesh.numberOfCells(), mesh.connectivity().maxNbNodePerCell()),
m_xj("xj", mesh.numberOfCells()),
m_Vj("Vj", mesh.numberOfCells())
{
if constexpr (dimension==1) {
// in 1d Cjr are computed once for all
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
m_Cjr(j,0)=-1;
m_Cjr(j,1)= 1;
});
// in 1d njr=Cjr
m_njr=m_Cjr;
Kokkos::parallel_for(m_mesh.numberOfCells(), KOKKOS_LAMBDA(const int& j) {
m_ljr(j,0)= 1;
m_ljr(j,1)= 1;
});
}
this->updateAllData();
}
~MeshData()
{
;
}
};
#endif // MESH_DATA_HPP