Skip to content
Snippets Groups Projects
Select Git revision
  • 21e3a2fdfb28a1c290139446f285ab6325e43d95
  • develop default protected
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • feature/escobar-smoother
  • feature/hypoelasticity-clean
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

Heat5PointsAlgorithm.hpp

Blame
  • main.cpp 11.30 KiB
    #include <iostream>
    #include <Kokkos_Core.hpp>
    #include <RevisionInfo.hpp>
    #include <rang.hpp>
    #include <FPEManager.hpp>
    #include <SignalManager.hpp>
    #include <ConsoleManager.hpp>
    
    // #include <RawKokkosAcousticSolver.hpp>
    // #include <MeshLessAcousticSolver.hpp>
    // #include <AcousticSolverClass.hpp>
    // #include <AcousticSolverTest.hpp>
    
    #include <Connectivity1D.hpp>
    #include <Mesh.hpp>
    #include <AcousticSolver.hpp>
    #include <FiniteVolumesDiffusion.hpp>
    
    #include <TinyVector.hpp>
    #include <TinyMatrix.hpp>
    
    #include <CLI/CLI.hpp>
    #include <cassert>
    #include <limits>
    #include <map>
    
    int main(int argc, char *argv[])
    {
      long unsigned number = 10;
    
      {
        CLI::App app{"Pastis help"};
    
        app.add_option("number,-n,--number", number, "Number of cells");//->required();
    
        int threads=-1;
        app.add_option("--threads", threads, "Number of Kokkos threads")->check(CLI::Range(1,std::numeric_limits<decltype(threads)>::max()));
    
        std::string colorize="auto";
        app.add_set("--colorize", colorize, {"auto", "yes", "no"}, "Colorize console output", true);
    
        bool disable_fpe = false;
        app.add_flag("--no-fpe", disable_fpe, "Do not trap floating point exceptions");
        bool disable_signals = false;
        app.add_flag("--no-signal", disable_signals, "Do not catches signals");
    
        std::string pause_on_error="auto";
        app.add_set("--pause-on-error", pause_on_error, {"auto", "yes", "no"}, "Pause for debugging on unexpected error", true);
    
        std::atexit([](){std::cout << rang::style::reset;});
        try {
          app.parse(argc, argv);
        } catch (const CLI::ParseError &e) {
          return app.exit(e);
        }
    
        ConsoleManager::init(colorize);
        FPEManager::init(not disable_fpe);
        SignalManager::setPauseForDebug(pause_on_error);
        SignalManager::init(not disable_signals);
      }
      
      std::cout << "Code version: "
    	    << rang::style::bold << RevisionInfo::version() << rang::style::reset << '\n';
    
      std::cout << "-------------------- "
    	    << rang::fg::green
    	    << "git info"
    	    << rang::fg::reset
    	    <<" -------------------------"
    	    << '\n';
      std::cout << "tag:  " << rang::fg::reset
    	    << rang::style::bold << RevisionInfo::gitTag() << rang::style::reset << '\n';
      std::cout << "HEAD: " << rang::style::bold << RevisionInfo::gitHead() << rang::style::reset << '\n';
      std::cout << "hash: " << rang::style::bold << RevisionInfo::gitHash() << rang::style::reset << "  (";
    
      if (RevisionInfo::gitIsClean()) {
        std::cout << rang::fgB::green << "clean" << rang::fg::reset;
      } else {
        std::cout << rang::fgB::red << "dirty" << rang::fg::reset; 
      }
      std::cout << ")\n";
      std::cout << "-------------------------------------------------------\n";
    
      Kokkos::initialize(argc, argv);
      Kokkos::DefaultExecutionSpace::print_configuration(std::cout);
    
      std::map<std::string, double> method_cost_map;
    
      // { // Basic function based acoustic solver
      //   Kokkos::Timer timer;
      //   timer.reset();
      //   RawKokkos::AcousticSolver(number);
      //   method_cost_map["RawKokkos"] = timer.seconds();
      // }
    
      // { // class for acoustic solver (mesh less)
      //   Kokkos::Timer timer;
      //   timer.reset();
      //   MeshLessAcousticSolver acoustic_solver(number);
      //   method_cost_map["MeshLessAcousticSolver"] = timer.seconds();
      // }
    
      // { // class for acoustic solver
      //   Kokkos::Timer timer;
      //   timer.reset();
      //   AcousticSolverClass acoustic_solver(number);
      //   method_cost_map["AcousticSolverClass"] = timer.seconds();
      // }
    
      // { // class for acoustic solver test
      //   Kokkos::Timer timer;
      //   timer.reset();
      //   AcousticSolverTest acoustic_solver(number);
      //   method_cost_map["AcousticSolverTest"] = timer.seconds();
      // }
    
    
      { 
        Kokkos::Timer timer;
        timer.reset();
        Connectivity1D connectivity(number);
        typedef Mesh<Connectivity1D> MeshType;
        typedef MeshData<MeshType> MeshDataType;
        typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType;
    
        MeshType mesh(connectivity);
        MeshDataType mesh_data(mesh);
        UnknownsType unknowns(mesh_data);
    
        unknowns.initializeSod();
    
        AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns);
        FiniteVolumesDiffusion<MeshDataType> finite_volumes_diffusion(mesh_data, unknowns);
    
        typedef TinyVector<MeshType::dimension> Rd;
    
        const Kokkos::View<const double*> Vj = mesh_data.Vj();
        const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();
    
        const double tmax=1.5;
        double t=0;
    
        int itermax=std::numeric_limits<int>::max();
        int iteration=0;
    
        Kokkos::View<double*> rhoj = unknowns.rhoj();
        Kokkos::View<double*> ej = unknowns.ej();
        Kokkos::View<double*> pj = unknowns.pj();
        Kokkos::View<double*> gammaj = unknowns.gammaj();
        Kokkos::View<double*> cj = unknowns.cj();
        Kokkos::View<double*> kj = unknowns.kj();
    
        BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);
    
        //double c = 0.;
        //c = finite_volumes_diffusion.conservatif(unknowns);
    
        while((t<tmax) and (iteration<itermax)) {
         
          // ETAPE 1 DU SPLITTING - EULER
          
          double dt_euler = 0.4*acoustic_solver.acoustic_dt(Vj, cj);
    
          if (t+dt_euler > tmax) {
    	dt_euler = tmax-t;
          }
          acoustic_solver.computeNextStep(t,dt_euler, unknowns);
          t += dt_euler;
          
          // ETAPE 2 DU SPLITTING - DIFFUSION
          
          double dt_diff = 0.4*finite_volumes_diffusion.diffusion_dt(rhoj, kj, cj);
     
          if (dt_euler <= dt_diff) {
    	dt_diff = dt_euler;
    	finite_volumes_diffusion.computeNextStep(t, dt_diff, unknowns);
          } else {
    	double t_diff = t-dt_euler;
    	while (t > t_diff) {
    	  finite_volumes_diffusion.computeNextStep(t_diff, dt_diff, unknowns);
    	  dt_diff = 0.4*finite_volumes_diffusion.diffusion_dt(rhoj, kj, cj);
    	  if (t_diff+dt_diff > t) {
    	    dt_diff = t-t_diff;
    	  }
    	  t_diff += dt_diff;
    	}
          }
          
    
          // DIFFUSION PURE
          
          /*
          double dt = 0.4*finite_volumes_diffusion.diffusion_dt(rhoj,kj);
          if (t+dt > tmax) {
    	dt = tmax-t;
          }
          finite_volumes_diffusion.computeNextStep(t, dt, unknowns);
          t += dt;
          */
          
          block_eos.updatePandCFromRhoE();    
        
          ++iteration;
          std::cout << "temps t : " << t << std::endl;
        }
        
    
        std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
    	      << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";
        /*
        double error1 = 0.;
        error1 = finite_volumes_diffusion.error_L2_rho(unknowns, tmax);
    
        std::cout << "* " << rang::style::underline << "Erreur L2 rho" << rang::style::reset
    	      << ":  " << rang::fgB::green << error1 << rang::fg::reset << " \n";
        
        double error2 = 0.;
        error2 = finite_volumes_diffusion.error_Linf(unknowns, tmax);
    
        std::cout << "* " << rang::style::underline << "Erreur L infini rho" << rang::style::reset
    	      << ":  " << rang::fgB::green << error2 << rang::fg::reset << " \n";
    
        double error = 0.;
        error = finite_volumes_diffusion.error_L2_u(unknowns, tmax);
    
        std::cout << "* " << rang::style::underline << "Erreur L2 u" << rang::style::reset
    	      << ":  " << rang::fgB::green << error << rang::fg::reset << " \n";
        */
        /*
        double error3 = 0.;
        error3 = finite_volumes_diffusion.error_L2_E(unknowns);
    
        std::cout << "* " << rang::style::underline << "Erreur L2 E" << rang::style::reset
    	      << ":  " << rang::fgB::green << error3 << rang::fg::reset << " \n";
        */
        /*
        std::cout << "* " << rang::style::underline << "Resultat conservativite rho E temps = 0" << rang::style::reset
    	      << ":  " << rang::fgB::green << c << rang::fg::reset << " \n";
        
        double cons = 0.;
        cons = finite_volumes_diffusion.conservatif(unknowns);
    
        std::cout << "* " << rang::style::underline << "Resultat conservativite E" << rang::style::reset
    	      << ":  " << rang::fgB::green << cons << rang::fg::reset << " \n";
        */
    
        //method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
        method_cost_map["FiniteVolumesDiffusionWithMesh"] = timer.seconds();
        
        { // gnuplot output for density
         const Kokkos::View<const Rd*> xj   = mesh_data.xj();
         const Kokkos::View<const double*> rhoj = unknowns.rhoj();
         //double h = std::sqrt(1. - (tmax*tmax)/(50./9.));
         std::ofstream fout("rho1.5");
         fout.precision(15);
         for (size_t j=0; j<mesh.numberOfCells(); ++j) {
           fout << xj[j][0] << ' ' << rhoj[j] << '\n';
           // Kidder
           // fout << xj[j][0] << ' ' << rhoj[j] << ' ' << std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h << '\n';
         }
         }
    
         { // gnuplot output for vitesse
         const Kokkos::View<const Rd*> xj   = mesh_data.xj();
         const Kokkos::View<const Rd*> uj = unknowns.uj();
         //double pi = 4.*std::atan(1.);
         std::ofstream fout("u");
         fout.precision(15);
         for (size_t j=0; j<mesh.numberOfCells(); ++j) {
           //fout << xj[j][0] << ' ' << uj[j][0] <<  ' ' << std::sin(pi*xj[j][0])*std::exp(-2.*pi*pi*0.2) <<'\n'; //cas k constant
           //fout << xj[j][0] << ' ' << uj[j][0] <<  ' ' << std::sin(pi*xj[j][0])*std::exp(-0.2) <<'\n'; // cas k non constant
           fout << xj[j][0] << ' ' << uj[j][0] << '\n';
           //fout << xj[j][0] << ' ' << uj[j][0] << ' ' << -(xj[j][0]*tmax)/((50./9.)-tmax*tmax) << '\n';
         }
         }
    
         { // gnuplot output for energy
         const Kokkos::View<const Rd*> xj   = mesh_data.xj();
         const Kokkos::View<const double*> Ej = unknowns.Ej();
         //double pi = 4.*std::atan(1.);
         //double h = std::sqrt(1. - (tmax*tmax)/(50./9.));
         std::ofstream fout("E");
         fout.precision(15);
         for (size_t j=0; j<mesh.numberOfCells(); ++j) {
           //fout << xj[j][0] << ' ' << Ej[j] << ' ' << (-(std::cos(pi*xj[j][0])*std::cos(pi*xj[j][0]))+(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0])))*0.5*(std::exp(-4.*pi*pi*0.2)-1.) + 2. <<'\n'; // cas k constant
           //fout << xj[j][0] << ' ' << Ej[j] << ' ' << ((xj[j][0]*pi*pi*0.5)*(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0]) - std::cos(xj[j][0]*pi)*std::cos(pi*xj[j][0])) - pi*0.5*std::sin(pi*xj[j][0])*std::cos(pi*xj[j][0]))*(std::exp(-2.*0.2)-1.) + 2. <<'\n' ; // cas k non constant
           //fout << xj[j][0] << ' ' << Ej[j] << ' ' << (std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h)*(std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h) + (-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*(-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*0.5 << '\n'; // kidder
           fout << xj[j][0] << ' ' << Ej[j] << '\n';
         }
         }
    
         { // gnuplot output for entropy (gaz parfait en prenant cv = 1))
         const Kokkos::View<const Rd*> xj   = mesh_data.xj();
         const Kokkos::View<const double*> rhoj = unknowns.rhoj();
         const Kokkos::View<const double*> pj = unknowns.pj();
         const Kokkos::View<const double*> gammaj = unknowns.gammaj();
         std::ofstream fout("S");
         fout.precision(15);
         for (size_t j=0; j<mesh.numberOfCells(); ++j) {
           fout << xj[j][0] << ' ' << std::log(pj[j]*std::pow(rhoj[j],-gammaj[j])) << '\n';
         }
         }
    
      }
    
      Kokkos::finalize();
    
      std::cout << "----------------------\n";
    
      std::string::size_type size=0;
      for (const auto& method_cost : method_cost_map) {
        size = std::max(size, method_cost.first.size());
      }
    
      for (const auto& method_cost : method_cost_map) {
        std::cout << "* ["
          	      << rang::fgB::cyan
    	      << std::setw(size) << std::left
    	      << method_cost.first
    	      << rang::fg::reset
    	      << "] Execution time: "
    	      << rang::style::bold
    	      << method_cost.second
    	      << rang::style::reset << '\n';
      }
      
      return 0;
    }