Skip to content
Snippets Groups Projects
Select Git revision
  • 21e3a2fdfb28a1c290139446f285ab6325e43d95
  • develop default protected
  • feature/gmsh-reader
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • feature/escobar-smoother
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

ElasticityDiamondAlgorithm.cpp

Blame
  • ElasticityDiamondAlgorithm.cpp 35.70 KiB
    #include <language/algorithms/ElasticityDiamondAlgorithm.hpp>
    
    #include <algebra/CRSMatrix.hpp>
    #include <algebra/CRSMatrixDescriptor.hpp>
    #include <algebra/LeastSquareSolver.hpp>
    #include <algebra/LinearSolver.hpp>
    #include <algebra/SmallMatrix.hpp>
    #include <algebra/TinyVector.hpp>
    #include <algebra/Vector.hpp>
    #include <language/utils/InterpolateItemValue.hpp>
    #include <mesh/Connectivity.hpp>
    #include <mesh/DualConnectivityManager.hpp>
    #include <mesh/DualMeshManager.hpp>
    #include <mesh/Mesh.hpp>
    #include <mesh/MeshData.hpp>
    #include <mesh/MeshDataManager.hpp>
    #include <mesh/MeshFaceBoundary.hpp>
    #include <mesh/PrimalToDiamondDualConnectivityDataMapper.hpp>
    #include <scheme/DirichletBoundaryConditionDescriptor.hpp>
    #include <scheme/NeumannBoundaryConditionDescriptor.hpp>
    #include <scheme/SymmetryBoundaryConditionDescriptor.hpp>
    
    template <size_t Dimension>
    ElasticityDiamondScheme<Dimension>::ElasticityDiamondScheme(
      std::shared_ptr<const IMesh> i_mesh,
      const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list,
      const FunctionSymbolId& lambda_id,
      const FunctionSymbolId& mu_id,
      const FunctionSymbolId& f_id,
      const FunctionSymbolId& U_id)
    {
      using ConnectivityType = Connectivity<Dimension>;
      using MeshType         = Mesh<ConnectivityType>;
      using MeshDataType     = MeshData<Dimension>;
    
      using BoundaryCondition =
        std::variant<DirichletBoundaryCondition, NormalStrainBoundaryCondition, SymmetryBoundaryCondition>;
    
      using BoundaryConditionList = std::vector<BoundaryCondition>;
    
      BoundaryConditionList boundary_condition_list;
    
      std::cout << "number of bc descr = " << bc_descriptor_list.size() << '\n';
      std::shared_ptr mesh = std::dynamic_pointer_cast<const MeshType>(i_mesh);
    
      NodeValue<bool> is_dirichlet{mesh->connectivity()};
      is_dirichlet.fill(false);
      NodeValue<TinyVector<Dimension>> dirichlet_value{mesh->connectivity()};
      {
        TinyVector<Dimension> nan_tiny_vector;
        for (size_t i = 0; i < Dimension; ++i) {
          nan_tiny_vector[i] = std::numeric_limits<double>::signaling_NaN();
        }
        dirichlet_value.fill(nan_tiny_vector);
      }
    
      for (const auto& bc_descriptor : bc_descriptor_list) {
        bool is_valid_boundary_condition = true;
    
        switch (bc_descriptor->type()) {
        case IBoundaryConditionDescriptor::Type::symmetry: {
          const SymmetryBoundaryConditionDescriptor& sym_bc_descriptor =
            dynamic_cast<const SymmetryBoundaryConditionDescriptor&>(*bc_descriptor);
          if constexpr (Dimension > 1) {
            MeshFaceBoundary mesh_face_boundary = getMeshFaceBoundary(*mesh, sym_bc_descriptor.boundaryDescriptor());
            boundary_condition_list.push_back(SymmetryBoundaryCondition{mesh_face_boundary.faceList()});
    
          } else {
            throw NotImplementedError("Symmetry conditions are not supported in 1d");
          }
    
          break;
        }
        case IBoundaryConditionDescriptor::Type::dirichlet: {
          const DirichletBoundaryConditionDescriptor& dirichlet_bc_descriptor =
            dynamic_cast<const DirichletBoundaryConditionDescriptor&>(*bc_descriptor);
          if (dirichlet_bc_descriptor.name() == "dirichlet") {
            if constexpr (Dimension > 1) {
              MeshFaceBoundary mesh_face_boundary =
                getMeshFaceBoundary(*mesh, dirichlet_bc_descriptor.boundaryDescriptor());
              MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(*mesh);
    
              const FunctionSymbolId g_id = dirichlet_bc_descriptor.rhsSymbolId();
    
              Array<const TinyVector<Dimension>> value_list = InterpolateItemValue<TinyVector<Dimension>(
                TinyVector<Dimension>)>::template interpolate<ItemType::face>(g_id, mesh_data.xl(),
                                                                              mesh_face_boundary.faceList());
    
              boundary_condition_list.push_back(DirichletBoundaryCondition{mesh_face_boundary.faceList(), value_list});
            } else {
              throw NotImplementedError("Dirichlet conditions are not supported in 1d");
            }
          } else if (dirichlet_bc_descriptor.name() == "normal_strain") {
            if constexpr (Dimension > 1) {
              MeshFaceBoundary mesh_face_boundary =
                getMeshFaceBoundary(*mesh, dirichlet_bc_descriptor.boundaryDescriptor());
              MeshDataType& mesh_data = MeshDataManager::instance().getMeshData(*mesh);
    
              const FunctionSymbolId g_id = dirichlet_bc_descriptor.rhsSymbolId();
    
              Array<const TinyVector<Dimension>> value_list = InterpolateItemValue<TinyVector<Dimension>(
                TinyVector<Dimension>)>::template interpolate<ItemType::face>(g_id, mesh_data.xl(),
                                                                              mesh_face_boundary.faceList());
              boundary_condition_list.push_back(NormalStrainBoundaryCondition{mesh_face_boundary.faceList(), value_list});
            } else {
              throw NotImplementedError("Normal strain conditions are not supported in 1d");
            }
    
          } else {
            is_valid_boundary_condition = false;
          }
          break;
        }
        default: {
          is_valid_boundary_condition = false;
        }
        }
        if (not is_valid_boundary_condition) {
          std::ostringstream error_msg;
          error_msg << *bc_descriptor << " is an invalid boundary condition for elasticity equation";
          throw NormalError(error_msg.str());
        }
      }
    
      if constexpr (Dimension > 1) {
        const CellValue<const size_t> cell_dof_number = [&] {
          CellValue<size_t> compute_cell_dof_number{mesh->connectivity()};
          parallel_for(
            mesh->numberOfCells(), PUGS_LAMBDA(CellId cell_id) { compute_cell_dof_number[cell_id] = cell_id; });
          return compute_cell_dof_number;
        }();
        size_t number_of_dof = mesh->numberOfCells();
    
        const FaceValue<const size_t> face_dof_number = [&] {
          FaceValue<size_t> compute_face_dof_number{mesh->connectivity()};
          compute_face_dof_number.fill(std::numeric_limits<size_t>::max());
          for (const auto& boundary_condition : boundary_condition_list) {
            std::visit(
              [&](auto&& bc) {
                using T = std::decay_t<decltype(bc)>;
                if constexpr ((std::is_same_v<T, NormalStrainBoundaryCondition>) or
                              (std::is_same_v<T, SymmetryBoundaryCondition>) or
                              (std::is_same_v<T, DirichletBoundaryCondition>)) {
                  const auto& face_list = bc.faceList();
    
                  for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
                    const FaceId face_id = face_list[i_face];
                    if (compute_face_dof_number[face_id] != std::numeric_limits<size_t>::max()) {
                      std::ostringstream os;
                      os << "The face " << face_id << " is used at least twice for boundary conditions";
                      throw NormalError(os.str());
                    } else {
                      compute_face_dof_number[face_id] = number_of_dof++;
                    }
                  }
                }
              },
              boundary_condition);
          }
    
          return compute_face_dof_number;
        }();
    
        const auto& primal_face_to_node_matrix             = mesh->connectivity().faceToNodeMatrix();
        const auto& face_to_cell_matrix                    = mesh->connectivity().faceToCellMatrix();
        const FaceValue<const bool> primal_face_is_neumann = [&] {
          FaceValue<bool> face_is_neumann{mesh->connectivity()};
          face_is_neumann.fill(false);
          for (const auto& boundary_condition : boundary_condition_list) {
            std::visit(
              [&](auto&& bc) {
                using T = std::decay_t<decltype(bc)>;
                if constexpr ((std::is_same_v<T, NormalStrainBoundaryCondition>)) {
                  const auto& face_list = bc.faceList();
    
                  for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
                    const FaceId face_id     = face_list[i_face];
                    face_is_neumann[face_id] = true;
                  }
                }
              },
              boundary_condition);
          }
    
          return face_is_neumann;
        }();
    
        const FaceValue<const bool> primal_face_is_symmetry = [&] {
          FaceValue<bool> face_is_symmetry{mesh->connectivity()};
          face_is_symmetry.fill(false);
          for (const auto& boundary_condition : boundary_condition_list) {
            std::visit(
              [&](auto&& bc) {
                using T = std::decay_t<decltype(bc)>;
                if constexpr ((std::is_same_v<T, SymmetryBoundaryCondition>)) {
                  const auto& face_list = bc.faceList();
    
                  for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
                    const FaceId face_id      = face_list[i_face];
                    face_is_symmetry[face_id] = true;
                  }
                }
              },
              boundary_condition);
          }
    
          return face_is_symmetry;
        }();
    
        NodeValue<bool> primal_node_is_on_boundary(mesh->connectivity());
        if (parallel::size() > 1) {
          throw NotImplementedError("Calculation of node_is_on_boundary is incorrect");
        }
    
        primal_node_is_on_boundary.fill(false);
        for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) {
          if (face_to_cell_matrix[face_id].size() == 1) {
            for (size_t i_node = 0; i_node < primal_face_to_node_matrix[face_id].size(); ++i_node) {
              NodeId node_id                      = primal_face_to_node_matrix[face_id][i_node];
              primal_node_is_on_boundary[node_id] = true;
            }
          }
        }
    
        FaceValue<bool> primal_face_is_on_boundary(mesh->connectivity());
        if (parallel::size() > 1) {
          throw NotImplementedError("Calculation of face_is_on_boundary is incorrect");
        }
    
        primal_face_is_on_boundary.fill(false);
        for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) {
          if (face_to_cell_matrix[face_id].size() == 1) {
            primal_face_is_on_boundary[face_id] = true;
          }
        }
    
        FaceValue<bool> primal_face_is_dirichlet(mesh->connectivity());
        if (parallel::size() > 1) {
          throw NotImplementedError("Calculation of face_is_neumann is incorrect");
        }
    
        primal_face_is_dirichlet.fill(false);
        for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) {
          primal_face_is_dirichlet[face_id] = (primal_face_is_on_boundary[face_id] && (!primal_face_is_neumann[face_id]) &&
                                               (!primal_face_is_symmetry[face_id]));
        }
        MeshDataType& mesh_data                          = MeshDataManager::instance().getMeshData(*mesh);
        const NodeValue<const TinyVector<Dimension>>& xr = mesh->xr();
    
        const FaceValue<const TinyVector<Dimension>>& xl = mesh_data.xl();
        const CellValue<const TinyVector<Dimension>>& xj = mesh_data.xj();
        const auto& node_to_cell_matrix                  = mesh->connectivity().nodeToCellMatrix();
        const auto& node_to_face_matrix                  = mesh->connectivity().nodeToFaceMatrix();
        CellValuePerNode<double> w_rj{mesh->connectivity()};
        FaceValuePerNode<double> w_rl{mesh->connectivity()};
    
        const NodeValuePerFace<const TinyVector<Dimension>> primal_nlr = mesh_data.nlr();
        auto project_to_face = [&](const TinyVector<Dimension>& x, const FaceId face_id) -> const TinyVector<Dimension> {
          TinyVector<Dimension> proj;
          const TinyVector<Dimension> nil = primal_nlr(face_id, 0);
          proj                            = x - dot((x - xl[face_id]), nil) * nil;
          return proj;
        };
    
        for (size_t i = 0; i < w_rl.numberOfValues(); ++i) {
          w_rl[i] = std::numeric_limits<double>::signaling_NaN();
        }
    
        for (NodeId i_node = 0; i_node < mesh->numberOfNodes(); ++i_node) {
          SmallVector<double> b{Dimension + 1};
          b[0] = 1;
          for (size_t i = 1; i < Dimension + 1; i++) {
            b[i] = xr[i_node][i - 1];
          }
          const auto& node_to_cell = node_to_cell_matrix[i_node];
    
          if (not primal_node_is_on_boundary[i_node]) {
            SmallMatrix<double> A{Dimension + 1, node_to_cell.size()};
            for (size_t j = 0; j < node_to_cell.size(); j++) {
              A(0, j) = 1;
            }
            for (size_t i = 1; i < Dimension + 1; i++) {
              for (size_t j = 0; j < node_to_cell.size(); j++) {
                const CellId J = node_to_cell[j];
                A(i, j)        = xj[J][i - 1];
              }
            }
    
            SmallVector<double> x{node_to_cell.size()};
            x = zero;
    
            LeastSquareSolver ls_solver;
            ls_solver.solveLocalSystem(A, x, b);
    
            for (size_t j = 0; j < node_to_cell.size(); j++) {
              w_rj(i_node, j) = x[j];
            }
          } else {
            int nb_face_used = 0;
            for (size_t i_face = 0; i_face < node_to_face_matrix[i_node].size(); ++i_face) {
              FaceId face_id = node_to_face_matrix[i_node][i_face];
              if (primal_face_is_on_boundary[face_id]) {
                nb_face_used++;
              }
            }
            SmallMatrix<double> A{Dimension + 1, node_to_cell.size() + nb_face_used};
            for (size_t j = 0; j < node_to_cell.size() + nb_face_used; j++) {
              A(0, j) = 1;
            }
            for (size_t i = 1; i < Dimension + 1; i++) {
              for (size_t j = 0; j < node_to_cell.size(); j++) {
                const CellId J = node_to_cell[j];
                A(i, j)        = xj[J][i - 1];
              }
            }
            for (size_t i = 1; i < Dimension + 1; i++) {
              int cpt_face = 0;
              for (size_t i_face = 0; i_face < node_to_face_matrix[i_node].size(); ++i_face) {
                FaceId face_id = node_to_face_matrix[i_node][i_face];
                if (primal_face_is_on_boundary[face_id]) {
                  if (primal_face_is_symmetry[face_id]) {
                    for (size_t j = 0; j < face_to_cell_matrix[face_id].size(); ++j) {
                      const CellId cell_id                 = face_to_cell_matrix[face_id][j];
                      TinyVector<Dimension> xproj          = project_to_face(xj[cell_id], face_id);
                      A(i, node_to_cell.size() + cpt_face) = xproj[i - 1];
                    }
                  } else {
                    A(i, node_to_cell.size() + cpt_face) = xl[face_id][i - 1];
                  }
                  cpt_face++;
                }
              }
            }
    
            SmallVector<double> x{node_to_cell.size() + nb_face_used};
            x = zero;
    
            LeastSquareSolver ls_solver;
            ls_solver.solveLocalSystem(A, x, b);
    
            for (size_t j = 0; j < node_to_cell.size(); j++) {
              w_rj(i_node, j) = x[j];
            }
            int cpt_face = node_to_cell.size();
            for (size_t i_face = 0; i_face < node_to_face_matrix[i_node].size(); ++i_face) {
              FaceId face_id = node_to_face_matrix[i_node][i_face];
              if (primal_face_is_on_boundary[face_id]) {
                w_rl(i_node, i_face) = x[cpt_face++];
              }
            }
          }
        }
    
        {
          std::shared_ptr diamond_mesh = DualMeshManager::instance().getDiamondDualMesh(*mesh);
    
          MeshDataType& diamond_mesh_data = MeshDataManager::instance().getMeshData(*diamond_mesh);
    
          std::shared_ptr mapper =
            DualConnectivityManager::instance().getPrimalToDiamondDualConnectivityDataMapper(mesh->connectivity());
    
          CellValue<double> dual_muj =
            InterpolateItemValue<double(TinyVector<Dimension>)>::template interpolate<ItemType::cell>(mu_id,
                                                                                                      diamond_mesh_data
                                                                                                        .xj());
    
          CellValue<double> dual_lambdaj =
            InterpolateItemValue<double(TinyVector<Dimension>)>::template interpolate<ItemType::cell>(lambda_id,
                                                                                                      diamond_mesh_data
                                                                                                        .xj());
    
          CellValue<TinyVector<Dimension>> Uj = InterpolateItemValue<TinyVector<Dimension>(
            TinyVector<Dimension>)>::template interpolate<ItemType::cell>(U_id, mesh_data.xj());
    
          CellValue<TinyVector<Dimension>> fj = InterpolateItemValue<TinyVector<Dimension>(
            TinyVector<Dimension>)>::template interpolate<ItemType::cell>(f_id, mesh_data.xj());
    
          const CellValue<const double> dual_Vj = diamond_mesh_data.Vj();
    
          const FaceValue<const double> mes_l = [&] {
            if constexpr (Dimension == 1) {
              FaceValue<double> compute_mes_l{mesh->connectivity()};
              compute_mes_l.fill(1);
              return compute_mes_l;
            } else {
              return mesh_data.ll();
            }
          }();
    
          const CellValue<const double> dual_mes_l_j = [=] {
            CellValue<double> compute_mes_j{diamond_mesh->connectivity()};
            mapper->toDualCell(mes_l, compute_mes_j);
    
            return compute_mes_j;
          }();
    
          const CellValue<const double> primal_Vj   = mesh_data.Vj();
          FaceValue<const CellId> face_dual_cell_id = [=]() {
            FaceValue<CellId> computed_face_dual_cell_id{mesh->connectivity()};
            CellValue<CellId> dual_cell_id{diamond_mesh->connectivity()};
            parallel_for(
              diamond_mesh->numberOfCells(), PUGS_LAMBDA(CellId cell_id) { dual_cell_id[cell_id] = cell_id; });
    
            mapper->fromDualCell(dual_cell_id, computed_face_dual_cell_id);
    
            return computed_face_dual_cell_id;
          }();
    
          NodeValue<const NodeId> dual_node_primal_node_id = [=]() {
            CellValue<NodeId> cell_ignored_id{mesh->connectivity()};
            cell_ignored_id.fill(NodeId{std::numeric_limits<unsigned int>::max()});
    
            NodeValue<NodeId> node_primal_id{mesh->connectivity()};
    
            parallel_for(
              mesh->numberOfNodes(), PUGS_LAMBDA(NodeId node_id) { node_primal_id[node_id] = node_id; });
    
            NodeValue<NodeId> computed_dual_node_primal_node_id{diamond_mesh->connectivity()};
    
            mapper->toDualNode(node_primal_id, cell_ignored_id, computed_dual_node_primal_node_id);
    
            return computed_dual_node_primal_node_id;
          }();
    
          CellValue<NodeId> primal_cell_dual_node_id = [=]() {
            CellValue<NodeId> cell_id{mesh->connectivity()};
            NodeValue<NodeId> node_ignored_id{mesh->connectivity()};
            node_ignored_id.fill(NodeId{std::numeric_limits<unsigned int>::max()});
    
            NodeValue<NodeId> dual_node_id{diamond_mesh->connectivity()};
    
            parallel_for(
              diamond_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId node_id) { dual_node_id[node_id] = node_id; });
    
            CellValue<NodeId> computed_primal_cell_dual_node_id{mesh->connectivity()};
    
            mapper->fromDualNode(dual_node_id, node_ignored_id, cell_id);
    
            return cell_id;
          }();
          const auto& dual_Cjr                     = diamond_mesh_data.Cjr();
          FaceValue<TinyVector<Dimension>> dualClj = [&] {
            FaceValue<TinyVector<Dimension>> computedClj{mesh->connectivity()};
            const auto& dual_node_to_cell_matrix = diamond_mesh->connectivity().nodeToCellMatrix();
            const auto& dual_cell_to_node_matrix = diamond_mesh->connectivity().cellToNodeMatrix();
            parallel_for(
              mesh->numberOfFaces(), PUGS_LAMBDA(FaceId face_id) {
                const auto& primal_face_to_cell = face_to_cell_matrix[face_id];
                for (size_t i = 0; i < primal_face_to_cell.size(); i++) {
                  CellId cell_id            = primal_face_to_cell[i];
                  const NodeId dual_node_id = primal_cell_dual_node_id[cell_id];
                  for (size_t i_dual_cell = 0; i_dual_cell < dual_node_to_cell_matrix[dual_node_id].size(); i_dual_cell++) {
                    const CellId dual_cell_id = dual_node_to_cell_matrix[dual_node_id][i_dual_cell];
                    if (face_dual_cell_id[face_id] == dual_cell_id) {
                      for (size_t i_dual_node = 0; i_dual_node < dual_cell_to_node_matrix[dual_cell_id].size();
                           i_dual_node++) {
                        const NodeId final_dual_node_id = dual_cell_to_node_matrix[dual_cell_id][i_dual_node];
                        if (final_dual_node_id == dual_node_id) {
                          computedClj[face_id] = dual_Cjr(dual_cell_id, i_dual_node);
                        }
                      }
                    }
                  }
                }
              });
            return computedClj;
          }();
    
          FaceValue<TinyVector<Dimension>> nlj = [&] {
            FaceValue<TinyVector<Dimension>> computedNlj{mesh->connectivity()};
            parallel_for(
              mesh->numberOfFaces(),
              PUGS_LAMBDA(FaceId face_id) { computedNlj[face_id] = 1. / l2Norm(dualClj[face_id]) * dualClj[face_id]; });
            return computedNlj;
          }();
    
          FaceValue<const double> alpha_lambda_l = [&] {
            CellValue<double> alpha_j{diamond_mesh->connectivity()};
    
            parallel_for(
              diamond_mesh->numberOfCells(), PUGS_LAMBDA(CellId diamond_cell_id) {
                alpha_j[diamond_cell_id] = dual_lambdaj[diamond_cell_id] / dual_Vj[diamond_cell_id];
              });
    
            FaceValue<double> computed_alpha_l{mesh->connectivity()};
            mapper->fromDualCell(alpha_j, computed_alpha_l);
            return computed_alpha_l;
          }();
    
          FaceValue<const double> alpha_mu_l = [&] {
            CellValue<double> alpha_j{diamond_mesh->connectivity()};
    
            parallel_for(
              diamond_mesh->numberOfCells(), PUGS_LAMBDA(CellId diamond_cell_id) {
                alpha_j[diamond_cell_id] = dual_muj[diamond_cell_id] / dual_Vj[diamond_cell_id];
              });
    
            FaceValue<double> computed_alpha_l{mesh->connectivity()};
            mapper->fromDualCell(alpha_j, computed_alpha_l);
            return computed_alpha_l;
          }();
    
          const TinyMatrix<Dimension> I = identity;
    
          const Array<int> non_zeros{number_of_dof * Dimension};
          non_zeros.fill(Dimension * Dimension);
          CRSMatrixDescriptor<double> S(number_of_dof * Dimension, number_of_dof * Dimension, non_zeros);
          for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) {
            const double beta_mu_l          = l2Norm(dualClj[face_id]) * alpha_mu_l[face_id] * mes_l[face_id];
            const double beta_lambda_l      = l2Norm(dualClj[face_id]) * alpha_lambda_l[face_id] * mes_l[face_id];
            const auto& primal_face_to_cell = face_to_cell_matrix[face_id];
            for (size_t i_cell = 0; i_cell < primal_face_to_cell.size(); ++i_cell) {
              const CellId i_id                      = primal_face_to_cell[i_cell];
              const bool is_face_reversed_for_cell_i = (dot(dualClj[face_id], xl[face_id] - xj[i_id]) < 0);
    
              const TinyVector<Dimension> nil = [&] {
                if (is_face_reversed_for_cell_i) {
                  return -nlj[face_id];
                } else {
                  return nlj[face_id];
                }
              }();
              for (size_t j_cell = 0; j_cell < primal_face_to_cell.size(); ++j_cell) {
                const CellId j_id = primal_face_to_cell[j_cell];
                TinyMatrix<Dimension> M =
                  beta_mu_l * I + beta_mu_l * tensorProduct(nil, nil) + beta_lambda_l * tensorProduct(nil, nil);
                TinyMatrix<Dimension> N = tensorProduct(nil, nil);
    
                if (i_cell == j_cell) {
                  for (size_t i = 0; i < Dimension; ++i) {
                    for (size_t j = 0; j < Dimension; ++j) {
                      S((cell_dof_number[i_id] * Dimension) + i, (cell_dof_number[j_id] * Dimension) + j) += M(i, j);
                      if (primal_face_is_neumann[face_id]) {
                        S(face_dof_number[face_id] * Dimension + i, cell_dof_number[j_id] * Dimension + j) -= M(i, j);
                      }
                      if (primal_face_is_symmetry[face_id]) {
                        S(face_dof_number[face_id] * Dimension + i, cell_dof_number[j_id] * Dimension + j) +=
                          -((i == j) ? 1 : 0) + N(i, j);
                        S(face_dof_number[face_id] * Dimension + i, face_dof_number[face_id] * Dimension + j) +=
                          (i == j) ? 1 : 0;
                      }
                    }
                  }
                } else {
                  for (size_t i = 0; i < Dimension; ++i) {
                    for (size_t j = 0; j < Dimension; ++j) {
                      S((cell_dof_number[i_id] * Dimension) + i, (cell_dof_number[j_id] * Dimension) + j) -= M(i, j);
                    }
                  }
                }
              }
            }
          }
    
          const auto& dual_cell_to_node_matrix   = diamond_mesh->connectivity().cellToNodeMatrix();
          const auto& primal_node_to_cell_matrix = mesh->connectivity().nodeToCellMatrix();
          for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) {
            const double alpha_mu_face_id     = mes_l[face_id] * alpha_mu_l[face_id];
            const double alpha_lambda_face_id = mes_l[face_id] * alpha_lambda_l[face_id];
    
            for (size_t i_face_cell = 0; i_face_cell < face_to_cell_matrix[face_id].size(); ++i_face_cell) {
              CellId i_id                            = face_to_cell_matrix[face_id][i_face_cell];
              const bool is_face_reversed_for_cell_i = (dot(dualClj[face_id], xl[face_id] - xj[i_id]) < 0);
    
              for (size_t i_node = 0; i_node < primal_face_to_node_matrix[face_id].size(); ++i_node) {
                NodeId node_id = primal_face_to_node_matrix[face_id][i_node];
    
                const TinyVector<Dimension> nil = [&] {
                  if (is_face_reversed_for_cell_i) {
                    return -nlj[face_id];
                  } else {
                    return nlj[face_id];
                  }
                }();
    
                CellId dual_cell_id = face_dual_cell_id[face_id];
    
                for (size_t i_dual_node = 0; i_dual_node < dual_cell_to_node_matrix[dual_cell_id].size(); ++i_dual_node) {
                  const NodeId dual_node_id = dual_cell_to_node_matrix[dual_cell_id][i_dual_node];
                  if (dual_node_primal_node_id[dual_node_id] == node_id) {
                    const TinyVector<Dimension> Clr = dual_Cjr(dual_cell_id, i_dual_node);
    
                    TinyMatrix<Dimension> M = alpha_mu_face_id * dot(Clr, nil) * I +
                                              alpha_mu_face_id * tensorProduct(Clr, nil) +
                                              alpha_lambda_face_id * tensorProduct(nil, Clr);
    
                    for (size_t j_cell = 0; j_cell < primal_node_to_cell_matrix[node_id].size(); ++j_cell) {
                      CellId j_id = primal_node_to_cell_matrix[node_id][j_cell];
                      for (size_t i = 0; i < Dimension; ++i) {
                        for (size_t j = 0; j < Dimension; ++j) {
                          S((cell_dof_number[i_id] * Dimension) + i, (cell_dof_number[j_id] * Dimension) + j) -=
                            w_rj(node_id, j_cell) * M(i, j);
                          if (primal_face_is_neumann[face_id]) {
                            S(face_dof_number[face_id] * Dimension + i, cell_dof_number[j_id] * Dimension + j) +=
                              w_rj(node_id, j_cell) * M(i, j);
                          }
                        }
                      }
                    }
                    if (primal_node_is_on_boundary[node_id]) {
                      for (size_t l_face = 0; l_face < node_to_face_matrix[node_id].size(); ++l_face) {
                        FaceId l_id = node_to_face_matrix[node_id][l_face];
                        if (primal_face_is_on_boundary[l_id]) {
                          for (size_t i = 0; i < Dimension; ++i) {
                            for (size_t j = 0; j < Dimension; ++j) {
                              S(cell_dof_number[i_id] * Dimension + i, face_dof_number[l_id] * Dimension + j) -=
                                w_rl(node_id, l_face) * M(i, j);
                            }
                          }
                          if (primal_face_is_neumann[face_id]) {
                            for (size_t i = 0; i < Dimension; ++i) {
                              for (size_t j = 0; j < Dimension; ++j) {
                                S(face_dof_number[face_id] * Dimension + i, face_dof_number[l_id] * Dimension + j) +=
                                  w_rl(node_id, l_face) * M(i, j);
                              }
                            }
                          }
                        }
                      }
                    }
                  }
                }
                //            }
              }
            }
          }
          for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) {
            if (primal_face_is_dirichlet[face_id]) {
              for (size_t i = 0; i < Dimension; ++i) {
                S(face_dof_number[face_id] * Dimension + i, face_dof_number[face_id] * Dimension + i) += 1;
              }
            }
          }
    
          CRSMatrix A{S.getCRSMatrix()};
          Vector<double> b{number_of_dof * Dimension};
          b = zero;
          for (CellId cell_id = 0; cell_id < mesh->numberOfCells(); ++cell_id) {
            for (size_t i = 0; i < Dimension; ++i) {
              b[(cell_dof_number[cell_id] * Dimension) + i] = primal_Vj[cell_id] * fj[cell_id][i];
            }
          }
    
          // Dirichlet
          NodeValue<bool> node_tag{mesh->connectivity()};
          node_tag.fill(false);
          for (const auto& boundary_condition : boundary_condition_list) {
            std::visit(
              [&](auto&& bc) {
                using T = std::decay_t<decltype(bc)>;
                if constexpr (std::is_same_v<T, DirichletBoundaryCondition>) {
                  const auto& face_list  = bc.faceList();
                  const auto& value_list = bc.valueList();
                  for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
                    const FaceId face_id = face_list[i_face];
    
                    for (size_t i = 0; i < Dimension; ++i) {
                      b[(face_dof_number[face_id] * Dimension) + i] += value_list[i_face][i];
                    }
                  }
                }
              },
              boundary_condition);
          }
    
          for (const auto& boundary_condition : boundary_condition_list) {
            std::visit(
              [&](auto&& bc) {
                using T = std::decay_t<decltype(bc)>;
                if constexpr ((std::is_same_v<T, NormalStrainBoundaryCondition>)) {
                  const auto& face_list  = bc.faceList();
                  const auto& value_list = bc.valueList();
                  for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
                    FaceId face_id = face_list[i_face];
                    for (size_t i = 0; i < Dimension; ++i) {
                      b[face_dof_number[face_id] * Dimension + i] += mes_l[face_id] * value_list[i_face][i];   // sign
                    }
                  }
                }
              },
              boundary_condition);
          }
    
          Vector<double> U{number_of_dof * Dimension};
          U = zero;
          CellValue<TinyVector<Dimension>> Speed{mesh->connectivity()};
          FaceValue<TinyVector<Dimension>> Ul = InterpolateItemValue<TinyVector<Dimension>(
            TinyVector<Dimension>)>::template interpolate<ItemType::face>(U_id, mesh_data.xl());
          FaceValue<TinyVector<Dimension>> Speed_face{mesh->connectivity()};
    
          Vector r = A * U - b;
          std::cout << "initial (real) residu = " << std::sqrt(dot(r, r)) << '\n';
    
          LinearSolver solver;
          solver.solveLocalSystem(A, U, b);
    
          r = A * U - b;
    
          std::cout << "final (real) residu = " << std::sqrt(dot(r, r)) << '\n';
    
          for (CellId cell_id = 0; cell_id < mesh->numberOfCells(); ++cell_id) {
            for (size_t i = 0; i < Dimension; ++i) {
              Speed[cell_id][i] = U[(cell_dof_number[cell_id] * Dimension) + i];
            }
          }
          for (FaceId face_id = 0; face_id < mesh->numberOfFaces(); ++face_id) {
            for (size_t i = 0; i < Dimension; ++i) {
              if (primal_face_is_on_boundary[face_id]) {
                Speed_face[face_id][i] = U[(face_dof_number[face_id] * Dimension) + i];
              } else {
                Speed_face[face_id][i] = Ul[face_id][i];
              }
            }
          }
          Vector<double> Uexacte{mesh->numberOfCells() * Dimension};
          for (CellId j = 0; j < mesh->numberOfCells(); ++j) {
            for (size_t l = 0; l < Dimension; ++l) {
              Uexacte[(cell_dof_number[j] * Dimension) + l] = Uj[j][l];
            }
          }
    
          Vector<double> error{mesh->numberOfCells() * Dimension};
          for (CellId cell_id = 0; cell_id < mesh->numberOfCells(); ++cell_id) {
            for (size_t i = 0; i < Dimension; ++i) {
              error[(cell_id * Dimension) + i] = (Speed[cell_id][i] - Uj[cell_id][i]) * sqrt(primal_Vj[cell_id]);
            }
          }
          Vector<double> error_face{mesh->numberOfFaces() * Dimension};
          parallel_for(
            mesh->numberOfFaces(), PUGS_LAMBDA(FaceId face_id) {
              if (primal_face_is_on_boundary[face_id]) {
                for (size_t i = 0; i < Dimension; ++i) {
                  error_face[face_id * Dimension + i] = (Speed_face[face_id][i] - Ul[face_id][i]) * sqrt(mes_l[face_id]);
                }
              } else {
                error_face[face_id] = 0;
              }
            });
    
          std::cout << "||Error||_2 (cell)= " << std::sqrt(dot(error, error)) << "\n";
          std::cout << "||Error||_2 (face)= " << std::sqrt(dot(error_face, error_face)) << "\n";
          std::cout << "||Error||_2 (total)= " << std::sqrt(dot(error, error)) + std::sqrt(dot(error_face, error_face))
                    << "\n";
    
          NodeValue<TinyVector<3>> ur3d{mesh->connectivity()};
          ur3d.fill(zero);
    
          parallel_for(
            mesh->numberOfNodes(), PUGS_LAMBDA(NodeId node_id) {
              TinyVector<Dimension> x = zero;
              const auto node_cells   = node_to_cell_matrix[node_id];
              for (size_t i_cell = 0; i_cell < node_cells.size(); ++i_cell) {
                CellId cell_id = node_cells[i_cell];
                x += w_rj(node_id, i_cell) * Speed[cell_id];
              }
              const auto node_faces = node_to_face_matrix[node_id];
              for (size_t i_face = 0; i_face < node_faces.size(); ++i_face) {
                FaceId face_id = node_faces[i_face];
                if (primal_face_is_on_boundary[face_id]) {
                  x += w_rl(node_id, i_face) * Speed_face[face_id];
                }
              }
              for (size_t i = 0; i < Dimension; ++i) {
                ur3d[node_id][i] = x[i];
              }
            });
        }
      } else {
        throw NotImplementedError("not done in 1d");
      }
    }
    
    template <size_t Dimension>
    class ElasticityDiamondScheme<Dimension>::DirichletBoundaryCondition
    {
     private:
      const Array<const TinyVector<Dimension>> m_value_list;
      const Array<const FaceId> m_face_list;
    
     public:
      const Array<const FaceId>&
      faceList() const
      {
        return m_face_list;
      }
    
      const Array<const TinyVector<Dimension>>&
      valueList() const
      {
        return m_value_list;
      }
    
      DirichletBoundaryCondition(const Array<const FaceId>& face_list, const Array<const TinyVector<Dimension>>& value_list)
        : m_value_list{value_list}, m_face_list{face_list}
      {
        Assert(m_value_list.size() == m_face_list.size());
      }
    
      ~DirichletBoundaryCondition() = default;
    };
    
    template <size_t Dimension>
    class ElasticityDiamondScheme<Dimension>::NormalStrainBoundaryCondition
    {
     private:
      const Array<const TinyVector<Dimension>> m_value_list;
      const Array<const FaceId> m_face_list;
    
     public:
      const Array<const FaceId>&
      faceList() const
      {
        return m_face_list;
      }
    
      const Array<const TinyVector<Dimension>>&
      valueList() const
      {
        return m_value_list;
      }
    
      NormalStrainBoundaryCondition(const Array<const FaceId>& face_list,
                                    const Array<const TinyVector<Dimension>>& value_list)
        : m_value_list{value_list}, m_face_list{face_list}
      {
        Assert(m_value_list.size() == m_face_list.size());
      }
    
      ~NormalStrainBoundaryCondition() = default;
    };
    
    template <size_t Dimension>
    class ElasticityDiamondScheme<Dimension>::SymmetryBoundaryCondition
    {
     private:
      const Array<const TinyVector<Dimension>> m_value_list;
      const Array<const FaceId> m_face_list;
    
     public:
      const Array<const FaceId>&
      faceList() const
      {
        return m_face_list;
      }
    
     public:
      SymmetryBoundaryCondition(const Array<const FaceId>& face_list) : m_face_list{face_list} {}
    
      ~SymmetryBoundaryCondition() = default;
    };
    
    template ElasticityDiamondScheme<1>::ElasticityDiamondScheme(
      std::shared_ptr<const IMesh>,
      const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>&,
      const FunctionSymbolId&,
      const FunctionSymbolId&,
      const FunctionSymbolId&,
      const FunctionSymbolId&);
    
    template ElasticityDiamondScheme<2>::ElasticityDiamondScheme(
      std::shared_ptr<const IMesh>,
      const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>&,
      const FunctionSymbolId&,
      const FunctionSymbolId&,
      const FunctionSymbolId&,
      const FunctionSymbolId&);
    
    template ElasticityDiamondScheme<3>::ElasticityDiamondScheme(
      std::shared_ptr<const IMesh>,
      const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>&,
      const FunctionSymbolId&,
      const FunctionSymbolId&,
      const FunctionSymbolId&,
      const FunctionSymbolId&);