Skip to content
Snippets Groups Projects
Select Git revision
  • 21e3a2fdfb28a1c290139446f285ab6325e43d95
  • develop default protected
  • feature/gmsh-reader
  • origin/stage/bouguettaia
  • feature/kinetic-schemes
  • feature/reconstruction
  • feature/local-dt-fsi
  • feature/composite-scheme-sources
  • feature/composite-scheme-other-fluxes
  • feature/serraille
  • feature/variational-hydro
  • feature/composite-scheme
  • hyperplastic
  • feature/polynomials
  • feature/gks
  • feature/implicit-solver-o2
  • feature/coupling_module
  • feature/implicit-solver
  • feature/merge-local-dt-fsi
  • master protected
  • feature/escobar-smoother
  • v0.5.0 protected
  • v0.4.1 protected
  • v0.4.0 protected
  • v0.3.0 protected
  • v0.2.0 protected
  • v0.1.0 protected
  • Kidder
  • v0.0.4 protected
  • v0.0.3 protected
  • v0.0.2 protected
  • v0 protected
  • v0.0.1 protected
33 results

LeastSquareSolver.cpp

Blame
  • Connectivity.cpp 7.85 KiB
    #include <Connectivity.hpp>
    #include <map>
    
    template<>
    void Connectivity<3>::_computeFaceCellConnectivities()
    {
      Kokkos::View<unsigned short*> cell_nb_faces("cell_nb_faces", this->numberOfCells());
    
      typedef std::tuple<unsigned int, unsigned short, bool> CellFaceInfo;
    
      const auto& cell_to_node_matrix
          = m_item_to_item_matrix[itemId(TypeOfItem::cell)][itemId(TypeOfItem::node)];
    
      std::map<Face, std::vector<CellFaceInfo>> face_cells_map;
      for (unsigned int j=0; j<this->numberOfCells(); ++j) {
        const auto& cell_nodes = cell_to_node_matrix.rowConst(j);
    
        switch (cell_nodes.length) {
          case 4: { // tetrahedron
            cell_nb_faces[j] = 4;
            // face 0
            Face f0({cell_nodes(1),
                     cell_nodes(2),
                     cell_nodes(3)});
            face_cells_map[f0].emplace_back(std::make_tuple(j, 0, f0.reversed()));
    
            // face 1
            Face f1({cell_nodes(0),
                     cell_nodes(3),
                     cell_nodes(2)});
            face_cells_map[f1].emplace_back(std::make_tuple(j, 1, f1.reversed()));
    
            // face 2
            Face f2({cell_nodes(0),
                     cell_nodes(1),
                     cell_nodes(3)});
            face_cells_map[f2].emplace_back(std::make_tuple(j, 2, f2.reversed()));
    
            // face 3
            Face f3({cell_nodes(0),
                     cell_nodes(2),
                     cell_nodes(1)});
            face_cells_map[f3].emplace_back(std::make_tuple(j, 3, f3.reversed()));
            break;
          }
          case 8: { // hexahedron
            // face 0
            Face f0({cell_nodes(3),
                     cell_nodes(2),
                     cell_nodes(1),
                     cell_nodes(0)});
            face_cells_map[f0].emplace_back(std::make_tuple(j, 0, f0.reversed()));
    
            // face 1
            Face f1({cell_nodes(4),
                     cell_nodes(5),
                     cell_nodes(6),
                     cell_nodes(7)});
            face_cells_map[f1].emplace_back(std::make_tuple(j, 1, f1.reversed()));
    
            // face 2
            Face f2({cell_nodes(0),
                     cell_nodes(4),
                     cell_nodes(7),
                     cell_nodes(3)});
            face_cells_map[f2].emplace_back(std::make_tuple(j, 2, f2.reversed()));
    
            // face 3
            Face f3({cell_nodes(1),
                     cell_nodes(2),
                     cell_nodes(6),
                     cell_nodes(5)});
            face_cells_map[f3].emplace_back(std::make_tuple(j, 3, f3.reversed()));
    
            // face 4
            Face f4({cell_nodes(0),
                     cell_nodes(1),
                     cell_nodes(5),
                     cell_nodes(4)});
            face_cells_map[f4].emplace_back(std::make_tuple(j, 4, f4.reversed()));
    
            // face 5
            Face f5({cell_nodes(3),
                     cell_nodes(7),
                     cell_nodes(6),
                     cell_nodes(2)});
            face_cells_map[f5].emplace_back(std::make_tuple(j, 5, f5.reversed()));
    
            cell_nb_faces[j] = 6;
            break;
          }
          default: {
            std::cerr << "unexpected cell type!\n";
            std::exit(0);
          }
        }
      }
    
      {
        std::vector<std::vector<unsigned int>> cell_to_face_vector(this->numberOfCells());
        for (size_t j=0; j<cell_to_face_vector.size(); ++j) {
          cell_to_face_vector[j].resize(cell_nb_faces[j]);
        }
        int l=0;
        for (const auto& face_cells_vector : face_cells_map) {
          const auto& cells_vector = face_cells_vector.second;
          for (unsigned short lj=0; lj<cells_vector.size(); ++lj) {
            const auto& [cell_number, cell_local_face, reversed] = cells_vector[lj];
            cell_to_face_vector[cell_number][cell_local_face] = l;
          }
          ++l;
        }
        m_cell_to_face_matrix = cell_to_face_vector;
      }
    
      FaceValuePerCell<bool> cell_face_is_reversed(*this);
      {
        for (const auto& face_cells_vector : face_cells_map) {
          const auto& cells_vector = face_cells_vector.second;
          for (unsigned short lj=0; lj<cells_vector.size(); ++lj) {
            const auto& [cell_number, cell_local_face, reversed] = cells_vector[lj];
            cell_face_is_reversed(cell_number, cell_local_face) = reversed;
          }
        }
    
        m_cell_face_is_reversed = cell_face_is_reversed;
      }
    
      {
        std::vector<std::vector<unsigned int>> face_to_node_vector(face_cells_map.size());
        int l=0;
        for (const auto& face_info : face_cells_map) {
          const Face& face = face_info.first;
          face_to_node_vector[l] = face.nodeIdList();
          ++l;
        }
        m_face_to_node_matrix = face_to_node_vector;
      }
    
      {
        int l=0;
        for (const auto& face_cells_vector : face_cells_map) {
          const Face& face = face_cells_vector.first;
          m_face_number_map[face] = l;
          ++l;
        }
      }
    
      m_connectivity_computer.computeInverseConnectivityMatrix(m_cell_to_face_matrix,
                                                               m_face_to_cell_matrix);
    
      m_face_to_cell_local_face = CellValuePerFace<unsigned short>(*this);
    
      m_connectivity_computer.computeLocalChildItemNumberInItem(m_cell_to_face_matrix,
                                                                m_face_to_cell_matrix,
                                                                m_face_to_cell_local_face);
    
    #warning check that the number of cell per faces is <=2
      std::unordered_map<unsigned int, std::vector<unsigned int>> node_faces_map;
      for (size_t l=0; l<m_face_to_node_matrix.numRows(); ++l) {
        const auto& face_nodes = m_face_to_node_matrix.rowConst(l);
        for (size_t lr=0; lr<face_nodes.length; ++lr) {
          const unsigned int r = face_nodes(lr);
          node_faces_map[r].emplace_back(l);
        }
      }
      Kokkos::View<unsigned short*> node_nb_faces("node_nb_faces", this->numberOfNodes());
      size_t max_nb_face_per_node = 0;
      for (auto node_faces : node_faces_map) {
        max_nb_face_per_node = std::max(node_faces.second.size(), max_nb_face_per_node);
        node_nb_faces[node_faces.first] = node_faces.second.size();
      }
      m_node_nb_faces = node_nb_faces;
    
      Kokkos::View<unsigned int**> node_faces("node_faces", this->numberOfNodes(), max_nb_face_per_node);
      for (auto node_faces_vector : node_faces_map) {
        const unsigned int r = node_faces_vector.first;
        const std::vector<unsigned int>&  faces_vector = node_faces_vector.second;
        for (size_t l=0; l < faces_vector.size(); ++l) {
          node_faces(r, l) = faces_vector[l];
        }
      }
      m_node_faces = node_faces;
    }
    
    template<>
    void Connectivity<2>::_computeFaceCellConnectivities()
    {
      const auto& cell_to_node_matrix
          = m_item_to_item_matrix[itemId(TypeOfItem::cell)][itemId(TypeOfItem::node)];
    
      // In 2D faces are simply define
      typedef std::pair<unsigned int, unsigned short> CellFaceId;
      std::map<Face, std::vector<CellFaceId>> face_cells_map;
      for (unsigned int j=0; j<this->numberOfCells(); ++j) {
        const auto& cell_nodes = cell_to_node_matrix.rowConst(j);
        for (unsigned short r=0; r<cell_nodes.length; ++r) {
          unsigned int node0_id = cell_nodes(r);
          unsigned int node1_id = cell_nodes((r+1)%cell_nodes.length);
          if (node1_id<node0_id) {
            std::swap(node0_id, node1_id);
          }
          face_cells_map[Face({node0_id, node1_id})].push_back(std::make_pair(j, r));
        }
      }
    
      {
        int l=0;
        for (const auto& face_cells_vector : face_cells_map) {
          const Face& face = face_cells_vector.first;
          m_face_number_map[face] = l;
          ++l;
        }
      }
    
      {
        std::vector<std::vector<unsigned int>> face_to_node_vector(face_cells_map.size());
        int l=0;
        for (const auto& face_info : face_cells_map) {
          const Face& face = face_info.first;
          face_to_node_vector[l] = {face.m_node0_id, face.m_node1_id};
          ++l;
        }
        m_face_to_node_matrix = face_to_node_vector;
      }
    
      {
        std::vector<std::vector<unsigned int>> face_to_cell_vector(face_cells_map.size());
        int l=0;
        for (const auto& face_cells_vector : face_cells_map) {
          const auto& [face, cell_info_vector] = face_cells_vector;
          for (const auto& cell_info : cell_info_vector) {
            face_to_cell_vector[l].push_back(cell_info.second);
          }
          ++l;
        }
        m_face_to_cell_matrix = face_to_cell_vector;
      }
    }