Select Git revision
FluxingAdvectionSolver.hpp
-
Stéphane Del Pino authored
Allowed bc tyes are - inflow - outflow - symmetry Inflow is not yet implemented for variables of type P0Vector
Stéphane Del Pino authoredAllowed bc tyes are - inflow - outflow - symmetry Inflow is not yet implemented for variables of type P0Vector
PolynomialP.hpp 13.55 KiB
#ifndef POLYNOMIALP_HPP
#define POLYNOMIALP_HPP
#include <algebra/TinyVector.hpp>
template <size_t N, size_t Dimension>
class PolynomialP
{
private:
static constexpr size_t size_coef = [] {
if constexpr (Dimension == 1) {
return N + 1;
} else if constexpr (Dimension == 2) {
return (N + 1) * (N + 2) / 2;
} else {
static_assert(Dimension == 3);
return (N + 1) * (N + 2) * (N + 3) / 6;
}
}();
using Coefficients = TinyVector<size_coef, double>;
Coefficients m_coefficients;
static_assert((N >= 0), "PolynomialP degree must be non-negative");
static_assert((Dimension > 0), "PolynomialP dimension must be positive");
static_assert((Dimension <= 3), "PolynomialP dimension must no greater than three");
public:
PUGS_INLINE
constexpr size_t
degree() const
{
return N;
}
constexpr size_t
dim() const
{
return Dimension;
}
PUGS_INLINE
constexpr const TinyVector<size_coef, double>&
coefficients() const
{
return m_coefficients;
}
PUGS_INLINE
constexpr TinyVector<size_coef, double>&
coefficients()
{
return m_coefficients;
}
PUGS_INLINE constexpr bool
operator==(const PolynomialP& q) const
{
return m_coefficients == q.m_coefficients;
}
PUGS_INLINE constexpr PolynomialP(const TinyVector<size_coef, double>& coefficients) noexcept
: m_coefficients{coefficients}
{}
PUGS_INLINE
constexpr PolynomialP(TinyVector<size_coef, double>&& coefficients) noexcept : m_coefficients{coefficients} {}
PUGS_INLINE
constexpr bool
operator!=(const PolynomialP& q) const
{
return not this->operator==(q);
}
PUGS_INLINE constexpr PolynomialP
operator+(const PolynomialP Q) const
{
PolynomialP<N, Dimension> P(m_coefficients);
for (size_t i = 0; i < size_coef; ++i) {
P.coefficients()[i] += Q.coefficients()[i];
}
return P;
}
PUGS_INLINE constexpr PolynomialP
operator-() const
{
PolynomialP<N, Dimension> P;
P.coefficients() = -coefficients();
return P;
}
PUGS_INLINE constexpr PolynomialP() noexcept = default;
~PolynomialP() = default;
};
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<std::max(M, N)>
// operator-(const PolynomialP<M>& Q) const
// {
// PolynomialP<std::max(M, N)> P;
// if constexpr (M > N) {
// P.coefficients() = -Q.coefficients();
// for (size_t i = 0; i <= N; ++i) {
// P.coefficients()[i] += coefficients()[i];
// }
// } else {
// P.coefficients() = coefficients();
// for (size_t i = 0; i <= M; ++i) {
// P.coefficients()[i] -= Q.coefficients()[i];
// }
// }
// return P;
// }
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<N>&
// operator=(const PolynomialP<M>& Q)
// {
// coefficients() = zero;
// for (size_t i = N + 1; i <= M; ++i) {
// Assert(Q.coefficients()[i] == 0, "degree of polynomialP to small in assignation");
// }
// // static_assert(N >= M, "degree of polynomialP to small in assignation");
// for (size_t i = 0; i <= std::min(M, N); ++i) {
// coefficients()[i] = Q.coefficients()[i];
// }
// return *this;
// }
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<N>&
// operator+=(const PolynomialP<M>& Q)
// {
// static_assert(N >= M, "PolynomialP degree to small in affectation addition");
// for (size_t i = 0; i <= M; ++i) {
// coefficients()[i] += Q.coefficients()[i];
// }
// return *this;
// }
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<N>&
// operator-=(const PolynomialP<M>& Q)
// {
// static_assert(N >= M, "PolynomialP degree to small in affectation addition");
// for (size_t i = 0; i <= M; ++i) {
// coefficients()[i] -= Q.coefficients()[i];
// }
// return *this;
// }
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<M + N>
// operator*(const PolynomialP<M>& Q) const
// {
// PolynomialP<M + N> P;
// P.coefficients() = zero;
// for (size_t i = 0; i <= N; ++i) {
// for (size_t j = 0; j <= M; ++j) {
// P.coefficients()[i + j] += coefficients()[i] * Q.coefficients()[j];
// }
// }
// return P;
// }
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<N>&
// operator*=(const PolynomialP<M>& Q)
// {
// static_assert(N >= M, "Degree to small in affectation product");
// for (size_t i = N - M + 1; i <= N; ++i) {
// Assert(coefficients()[i] == 0, "Degree of affectation product greater than the degree of input polynomialP");
// }
// PolynomialP<N> P(zero);
// for (size_t i = 0; i <= N - M; ++i) {
// for (size_t j = 0; j <= M; ++j) {
// P.coefficients()[i + j] += coefficients()[i] * Q.coefficients()[j];
// }
// }
// coefficients() = P.coefficients();
// return *this;
// }
// PUGS_INLINE
// constexpr PolynomialP<N>
// operator*(const double& lambda) const
// {
// TinyVector<N + 1> mult_coefs = lambda * m_coefficients;
// PolynomialP<N> M(mult_coefs);
// return M;
// }
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<M * N>
// compose(const PolynomialP<M>& Q) const
// {
// PolynomialP<M * N> P;
// P.coefficients() = zero;
// PolynomialP<M * N> R;
// R.coefficients() = zero;
// for (size_t i = 0; i <= N; ++i) {
// R = Q.template pow<N>(i) * coefficients()[i];
// P += R; // R;
// }
// return P;
// }
// template <size_t M, size_t I>
// PUGS_INLINE constexpr PolynomialP<M * N>
// power(const PolynomialP<M>& Q) const
// {
// return coefficients()[I] * Q.template pow<N>(I);
// }
// template <size_t M, size_t... I>
// PUGS_INLINE constexpr PolynomialP<M * N>
// compose2(const PolynomialP<M>& Q, std::index_sequence<I...>) const
// {
// PolynomialP<M * N> P;
// P.coefficients() = zero;
// P = (power<M, I>(Q) + ...);
// return P;
// }
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<M * N>
// compose2(const PolynomialP<M>& Q) const
// {
// PolynomialP<M * N> P;
// P.coefficients() = zero;
// using IndexSequence = std::make_index_sequence<N + 1>;
// return compose2<M>(Q, IndexSequence{});
// // for (size_t i = 0; i <= N; ++i) {
// // P += Q.template pow<N>(i) * coefficients()[i];
// // }
// return P;
// }
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<M * N>
// operator()(const PolynomialP<M>& Q) const
// {
// PolynomialP<M * N> P;
// P.coefficients() = zero;
// PolynomialP<M * N> R;
// R.coefficients() = zero;
// for (size_t i = 0; i <= N; ++i) {
// R = Q.template pow<N>(i) * coefficients()[i];
// P += R; // R;
// }
// return P;
// }
// template <size_t M>
// PUGS_INLINE constexpr PolynomialP<M * N>
// pow(size_t power) const
// {
// Assert(power <= M, "You declared a polynomialP of degree too small for return of the pow function");
// PolynomialP<M * N> R;
// R.coefficients() = zero;
// if (power == 0) {
// R.coefficients()[0] = 1;
// } else {
// R = *this;
// for (size_t i = 1; i < power; ++i) {
// R = R * *this;
// }
// }
// return R;
// }
// PUGS_INLINE
// constexpr friend PolynomialP<N>
// operator*(const double& lambda, const PolynomialP<N> P)
// {
// return P * lambda;
// }
// // evaluation using Horner's method https://en.wikipedia.org/wiki/Horner's_method
// PUGS_INLINE
// constexpr double
// evaluate(const double& x) const
// {
// TinyVector<N + 1> coefs = this->coefficients();
// double bcoef = coefs[N];
// for (size_t i = N; i > 0; --i) {
// bcoef *= x;
// bcoef += coefs[i - 1];
// }
// return bcoef;
// }
// PUGS_INLINE
// constexpr double
// operator()(const double x) const
// {
// TinyVector<N + 1> coefs = this->coefficients();
// double bcoef = coefs[N];
// for (size_t i = N; i > 0; --i) {
// bcoef *= x;
// bcoef += coefs[i - 1];
// }
// return bcoef;
// }
// template <size_t M>
// PUGS_INLINE constexpr friend void
// divide(const PolynomialP<N>& P1, const PolynomialP<M>& P2, PolynomialP<N>& Q, PolynomialP<N>& R)
// {
// const size_t Nr = P1.realDegree();
// const size_t Mr = P2.realDegree();
// R.coefficients() = P1.coefficients();
// Q.coefficients() = zero;
// for (ssize_t k = Nr - Mr; k >= 0; --k) {
// Q.coefficients()[k] = R.coefficients()[Mr + k] / P2.coefficients()[Mr];
// for (ssize_t j = Mr + k; j >= k; --j) {
// R.coefficients()[j] -= Q.coefficients()[k] * P2.coefficients()[j - k];
// }
// }
// for (size_t j = Mr; j <= Nr; ++j) {
// R.coefficients()[j] = 0;
// }
// }
// PUGS_INLINE
// constexpr friend PolynomialP<N + 1>
// primitive(const PolynomialP<N>& P)
// {
// TinyVector<N + 2> coefs;
// for (size_t i = 0; i < N + 1; ++i) {
// coefs[i + 1] = P.coefficients()[i] / double(i + 1);
// }
// coefs[0] = 0;
// return PolynomialP<N + 1>{coefs};
// }
// PUGS_INLINE
// constexpr friend std::ostream&
// operator<<(std::ostream& os, const PolynomialP<N>& P)
// {
// // os << "P(x) = ";
// bool all_coef_zero = true;
// if (N == 0) {
// os << P.coefficients()[0];
// return os;
// }
// if (N != 1) {
// if (P.coefficients()[N] != 0.) {
// if (P.coefficients()[N] < 0.) {
// os << "- ";
// }
// if (P.coefficients()[N] != 1 && P.coefficients()[N] != -1) {
// os << std::abs(P.coefficients()[N]);
// }
// os << "x^" << N;
// all_coef_zero = false;
// }
// }
// for (size_t i = N - 1; i > 1; --i) {
// if (P.coefficients()[i] != 0.) {
// if (P.coefficients()[i] > 0.) {
// os << " + ";
// } else if (P.coefficients()[i] < 0.) {
// os << " - ";
// }
// if (P.coefficients()[i] != 1 && P.coefficients()[i] != -1) {
// os << std::abs(P.coefficients()[i]);
// }
// os << "x^" << i;
// all_coef_zero = false;
// }
// }
// if (P.coefficients()[1] != 0.) {
// if (P.coefficients()[1] > 0. && N != 1) {
// os << " + ";
// } else if (P.coefficients()[1] < 0.) {
// os << " - ";
// }
// if (P.coefficients()[1] != 1 && P.coefficients()[1] != -1) {
// os << std::abs(P.coefficients()[1]);
// }
// os << "x";
// all_coef_zero = false;
// }
// if (P.coefficients()[0] != 0. || all_coef_zero) {
// if (P.coefficients()[0] > 0.) {
// os << " + ";
// } else if (P.coefficients()[0] < 0.) {
// os << " - ";
// }
// os << std::abs(P.coefficients()[0]);
// }
// return os;
// }
// PUGS_INLINE
// constexpr friend void
// lagrangeBasis(const TinyVector<N + 1> zeros, TinyVector<N + 1, PolynomialP<N>>& basis)
// {
// PolynomialP<N> lj;
// for (size_t j = 0; j < N + 1; ++j) {
// basis[j] = lagrangePolynomialP(zeros, j);
// }
// }
// PUGS_INLINE
// constexpr friend PolynomialP<N>
// lagrangeToCanonical(const TinyVector<N + 1> lagrange_coefs, const TinyVector<N + 1, PolynomialP<N>>& basis)
// {
// PolynomialP<N> P(zero);
// // lagrangeBasis({0, 0, 0}, basis);
// for (size_t j = 0; j < N + 1; ++j) {
// P += basis[j] * lagrange_coefs[j];
// }
// return P;
// }
// template <size_t N>
// PUGS_INLINE constexpr PolynomialP<N> lagrangePolynomialP(const TinyVector<N + 1> zeros, const size_t k);
// template <size_t N>
// PUGS_INLINE constexpr TinyVector<N, PolynomialP<N - 1>>
// lagrangeBasis(const TinyVector<N>& zeros)
// {
// static_assert(N >= 1, "invalid degree");
// TinyVector<N, PolynomialP<N - 1>> basis;
// PolynomialP<N - 1> lj;
// for (size_t j = 0; j < N; ++j) {
// basis[j] = lagrangePolynomialP<N - 1>(zeros, j);
// }
// return basis;
// }
// template <size_t N>
// PUGS_INLINE constexpr double
// integrate(const PolynomialP<N>& P, const double& xinf, const double& xsup)
// {
// PolynomialP<N + 1> Q = primitive(P);
// return (Q(xsup) - Q(xinf));
// }
// template <size_t N>
// PUGS_INLINE constexpr double
// symmetricIntegrate(const PolynomialP<N>& P, const double& delta)
// {
// Assert(delta > 0, "A positive delta is needed for symmetricIntegrate");
// double integral = 0.;
// for (size_t i = 0; i <= N; ++i) {
// if (i % 2 == 0)
// integral += 2. * P.coefficients()[i] * std::pow(delta, i + 1) / (i + 1);
// }
// return integral;
// }
// template <size_t N>
// PUGS_INLINE constexpr auto
// derivative(const PolynomialP<N>& P)
// {
// if constexpr (N == 0) {
// return PolynomialP<0>(0);
// } else {
// TinyVector<N> coefs;
// for (size_t i = 0; i < N; ++i) {
// coefs[i] = double(i + 1) * P.coefficients()[i + 1];
// }
// return PolynomialP<N - 1>(coefs);
// }
// }
// template <size_t N>
// PUGS_INLINE constexpr PolynomialP<N>
// lagrangePolynomialP(const TinyVector<N + 1> zeros, const size_t k)
// {
// for (size_t i = 0; i < N; ++i) {
// Assert(zeros[i] < zeros[i + 1], "Interpolation values must be strictly increasing in Lagrange polynomialPs");
// }
// PolynomialP<N> lk;
// lk.coefficients() = zero;
// lk.coefficients()[0] = 1;
// for (size_t i = 0; i < N + 1; ++i) {
// if (k == i)
// continue;
// double factor = 1. / (zeros[k] - zeros[i]);
// PolynomialP<1> P({-zeros[i] * factor, factor});
// lk *= P;
// }
// return lk;
// }
#endif // POLYNOMIALP_HPP