#include <mesh/MeshSmootherEscobar.hpp>

#include <algebra/TinyMatrix.hpp>
#include <algebra/TinyVector.hpp>
#include <language/utils/InterpolateItemValue.hpp>
#include <mesh/Connectivity.hpp>
#include <mesh/ItemValueUtils.hpp>
#include <mesh/ItemValueVariant.hpp>
#include <mesh/Mesh.hpp>
#include <mesh/MeshCellZone.hpp>
#include <mesh/MeshFlatNodeBoundary.hpp>
#include <mesh/MeshLineNodeBoundary.hpp>
#include <mesh/MeshNodeBoundary.hpp>
#include <scheme/AxisBoundaryConditionDescriptor.hpp>
#include <scheme/DiscreteFunctionUtils.hpp>
#include <scheme/DiscreteFunctionVariant.hpp>
#include <scheme/FixedBoundaryConditionDescriptor.hpp>
#include <scheme/SymmetryBoundaryConditionDescriptor.hpp>
#include <utils/RandomEngine.hpp>

#include <variant>

template <size_t Dimension>
class MeshSmootherEscobarHandler::MeshSmootherEscobar
{
 private:
  using Rd               = TinyVector<Dimension>;
  using Rdxd             = TinyMatrix<Dimension>;
  using ConnectivityType = Connectivity<Dimension>;
  using MeshType         = Mesh<ConnectivityType>;

  const MeshType& m_given_mesh;

  class AxisBoundaryCondition;
  class FixedBoundaryCondition;
  class SymmetryBoundaryCondition;

  using BoundaryCondition = std::variant<AxisBoundaryCondition, FixedBoundaryCondition, SymmetryBoundaryCondition>;

  using BoundaryConditionList = std::vector<BoundaryCondition>;
  BoundaryConditionList m_boundary_condition_list;

  BoundaryConditionList
  _getBCList(const MeshType& mesh,
             const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list)
  {
    BoundaryConditionList bc_list;

    for (const auto& bc_descriptor : bc_descriptor_list) {
      switch (bc_descriptor->type()) {
      case IBoundaryConditionDescriptor::Type::axis: {
        if constexpr (Dimension == 1) {
          bc_list.emplace_back(FixedBoundaryCondition{getMeshNodeBoundary(mesh, bc_descriptor->boundaryDescriptor())});
        } else {
          bc_list.emplace_back(
            AxisBoundaryCondition{getMeshLineNodeBoundary(mesh, bc_descriptor->boundaryDescriptor())});
        }
        break;
      }
      case IBoundaryConditionDescriptor::Type::symmetry: {
        bc_list.emplace_back(
          SymmetryBoundaryCondition{getMeshFlatNodeBoundary(mesh, bc_descriptor->boundaryDescriptor())});
        break;
      }
      case IBoundaryConditionDescriptor::Type::fixed: {
        bc_list.emplace_back(FixedBoundaryCondition{getMeshNodeBoundary(mesh, bc_descriptor->boundaryDescriptor())});
        break;
      }
      default: {
        std::ostringstream error_msg;
        error_msg << *bc_descriptor << " is an invalid boundary condition for mesh smoother";
        throw NormalError(error_msg.str());
      }
      }
    }

    return bc_list;
  }

  void
  _applyBC(NodeValue<Rd>& shift) const
  {
    for (auto&& boundary_condition : m_boundary_condition_list) {
      std::visit(
        [&](auto&& bc) {
          using BCType = std::decay_t<decltype(bc)>;
          if constexpr (std::is_same_v<BCType, SymmetryBoundaryCondition>) {
            const Rd& n = bc.outgoingNormal();

            const Rdxd I   = identity;
            const Rdxd nxn = tensorProduct(n, n);
            const Rdxd P   = I - nxn;

            const Array<const NodeId>& node_list = bc.nodeList();
            parallel_for(
              node_list.size(), PUGS_LAMBDA(const size_t i_node) {
                const NodeId node_id = node_list[i_node];

                shift[node_id] = P * shift[node_id];
              });

          } else if constexpr (std::is_same_v<BCType, AxisBoundaryCondition>) {
            if constexpr (Dimension > 1) {
              const Rd& t = bc.direction();

              const Rdxd txt = tensorProduct(t, t);

              const Array<const NodeId>& node_list = bc.nodeList();
              parallel_for(
                node_list.size(), PUGS_LAMBDA(const size_t i_node) {
                  const NodeId node_id = node_list[i_node];

                  shift[node_id] = txt * shift[node_id];
                });
            } else {
              throw UnexpectedError("AxisBoundaryCondition make no sense in dimension 1");
            }

          } else if constexpr (std::is_same_v<BCType, FixedBoundaryCondition>) {
            const Array<const NodeId>& node_list = bc.nodeList();
            parallel_for(
              node_list.size(), PUGS_LAMBDA(const size_t i_node) {
                const NodeId node_id = node_list[i_node];
                shift[node_id]       = zero;
              });

          } else {
            throw UnexpectedError("invalid boundary condition type");
          }
        },
        boundary_condition);
    }
  }

  NodeValue<Rd>
  _getDisplacement() const
  {
    const ConnectivityType& connectivity = m_given_mesh.connectivity();
    NodeValue<const Rd> given_xr         = m_given_mesh.xr();

    auto node_to_cell_matrix        = connectivity.nodeToCellMatrix();
    auto cell_to_node_matrix        = connectivity.cellToNodeMatrix();
    auto node_number_in_their_cells = connectivity.nodeLocalNumbersInTheirCells();

    NodeValue<double> max_delta_xr{connectivity};
    parallel_for(
      connectivity.numberOfNodes(), PUGS_LAMBDA(const NodeId node_id) {
        const Rd& x0 = given_xr[node_id];

        const auto& node_cell_list = node_to_cell_matrix[node_id];
        double min_distance_2      = std::numeric_limits<double>::max();

        for (size_t i_cell = 0; i_cell < node_cell_list.size(); ++i_cell) {
          const size_t i_cell_node = node_number_in_their_cells(node_id, i_cell);

          const CellId cell_id       = node_cell_list[i_cell];
          const auto& cell_node_list = cell_to_node_matrix[cell_id];

          for (size_t i_node = 0; i_node < cell_node_list.size(); ++i_node) {
            if (i_node != i_cell_node) {
              const NodeId cell_node_id = cell_node_list[i_node];
              const Rd delta            = x0 - given_xr[cell_node_id];
              min_distance_2            = std::min(min_distance_2, dot(delta, delta));
            }
          }
        }
        double max_delta = std::sqrt(min_distance_2);

        max_delta_xr[node_id] = max_delta;
      });

    NodeValue<Rd> shift_r{connectivity};

    parallel_for(
      m_given_mesh.numberOfNodes(), PUGS_LAMBDA(const NodeId node_id) {
        const auto& node_cell_list = node_to_cell_matrix[node_id];
        Rd mean_position(zero);
        size_t number_of_neighbours = 0;

        for (size_t i_cell = 0; i_cell < node_cell_list.size(); ++i_cell) {
          const size_t i_cell_node = node_number_in_their_cells(node_id, i_cell);

          const CellId cell_id       = node_cell_list[i_cell];
          const auto& cell_node_list = cell_to_node_matrix[cell_id];
          for (size_t i_node = 0; i_node < cell_node_list.size(); ++i_node) {
            if (i_node != i_cell_node) {
              const NodeId cell_node_id = cell_node_list[i_node];
              mean_position += given_xr[cell_node_id];
              number_of_neighbours++;
            }
          }
        }
        mean_position    = 1. / number_of_neighbours * mean_position;
        shift_r[node_id] = mean_position - given_xr[node_id];
      });

    this->_applyBC(shift_r);

    synchronize(shift_r);

    return shift_r;
  }

 public:
  std::shared_ptr<const ItemValueVariant>
  getQuality() const
  {
    if constexpr (Dimension == 2) {
      const ConnectivityType& connectivity = m_given_mesh.connectivity();
      NodeValue<const Rd> xr               = m_given_mesh.xr();

      auto cell_to_node_matrix        = connectivity.cellToNodeMatrix();
      auto node_to_cell_matrix        = connectivity.nodeToCellMatrix();
      auto node_number_in_their_cells = connectivity.nodeLocalNumbersInTheirCells();

      auto is_boundary_node = connectivity.isBoundaryNode();
      NodeValue<double> quality{connectivity};

      constexpr double eps = 1E-15;
      quality.fill(2);

      auto f_inner = [=](const NodeId node_id, TinyVector<Dimension>& x) -> double {
        auto cell_list           = node_to_cell_matrix[node_id];
        auto node_number_in_cell = node_number_in_their_cells[node_id];

        const double alpha = 2 * std::acos(-1) / cell_list.size();
        const TinyMatrix<Dimension> W{1, std::cos(alpha),   //
                                      0, std::sin(alpha)};

        const TinyMatrix<Dimension> inv_W = inverse(W);

        std::array<TinyMatrix<Dimension>, Dimension> S_gradient =
          {TinyMatrix<Dimension>{-1, -1. / std::sin(alpha) + 1. / std::tan(alpha),   //
                                 +0, +0},                                            //
           TinyMatrix<Dimension>{+0, +0,                                             //
                                 -1, -1. / std::sin(alpha) + 1. / std::tan(alpha)}};

        SmallArray<TinyMatrix<Dimension>> S_list(cell_list.size());
        for (size_t i_cell = 0; i_cell < cell_list.size(); ++i_cell) {
          const size_t i_cell_node   = node_number_in_cell[i_cell];
          auto cell_node_list        = cell_to_node_matrix[cell_list[i_cell]];
          const size_t cell_nb_nodes = cell_node_list.size();

          const TinyVector a = xr[cell_node_list[(i_cell_node + 1) % cell_nb_nodes]];
          const TinyVector b = xr[cell_node_list[(i_cell_node + cell_nb_nodes - 1) % cell_nb_nodes]];

          const TinyMatrix<Dimension> A{a[0] - x[0], b[0] - x[0],   //
                                        a[1] - x[1], b[1] - x[1]};

          S_list[i_cell] = A * inv_W;
        }

        SmallArray<double> sigma_list(S_list.size());
        for (size_t i_cell = 0; i_cell < S_list.size(); ++i_cell) {
          sigma_list[i_cell] = det(S_list[i_cell]);
        }

        const double sigma_min = min(sigma_list);

        const double delta =
          (sigma_min < eps) ? std::max(std::sqrt(eps * (eps - sigma_min)), std::sqrt(eps) * std::abs(sigma_min)) : 0;

        auto frobenius = [](const TinyMatrix<Dimension>& M) { return std::sqrt(trace(transpose(M) * M)); };

        // TinyVector<Dimension> f_gradient = zero;
        // TinyMatrix<Dimension> f_hessian  = zero;

        double final_f = 0;

        for (size_t i_iter = 0; i_iter < 100; ++i_iter) {
          SmallArray<TinyMatrix<Dimension>> S_list(cell_list.size());
          for (size_t i_cell = 0; i_cell < cell_list.size(); ++i_cell) {
            const size_t i_cell_node   = node_number_in_cell[i_cell];
            auto cell_node_list        = cell_to_node_matrix[cell_list[i_cell]];
            const size_t cell_nb_nodes = cell_node_list.size();

            const TinyVector a = xr[cell_node_list[(i_cell_node + 1) % cell_nb_nodes]];
            const TinyVector b = xr[cell_node_list[(i_cell_node + cell_nb_nodes - 1) % cell_nb_nodes]];

            const TinyMatrix<Dimension> A{a[0] - x[0], b[0] - x[0],   //
                                          a[1] - x[1], b[1] - x[1]};

            S_list[i_cell] = A * inv_W;
          }

          SmallArray<double> sigma_list(S_list.size());
          for (size_t i_cell = 0; i_cell < S_list.size(); ++i_cell) {
            sigma_list[i_cell] = det(S_list[i_cell]);
          }

          double f                         = 0;
          TinyVector<Dimension> f_gradient = zero;
          TinyMatrix<Dimension> f_hessian  = zero;

          for (size_t i_cell = 0; i_cell < S_list.size(); ++i_cell) {
            const double sigma            = sigma_list[i_cell];
            const TinyMatrix<Dimension> S = S_list[i_cell];

            const TinyMatrix<Dimension> Sigma = sigma * inverse(S);

            const double S_norm      = frobenius(S);
            const double Sigma_norm  = frobenius(Sigma);
            const double S_norm2     = S_norm * S_norm;
            const double Sigma_norm2 = Sigma_norm * Sigma_norm;

            const double h = sigma + std::sqrt(sigma * sigma + 4 * delta * delta);

            const double f_jr = S_norm * Sigma_norm / h;

            TinyVector<Dimension> sigma_gradient{trace(Sigma * S_gradient[0]),   //
                                                 trace(Sigma * S_gradient[1])};

            const std::array<TinyMatrix<Dimension>, Dimension>   //
              Sigma_gradient_old{sigma_gradient[0] * inverse(S) - inverse(S) * S_gradient[0] * Sigma,
                                 sigma_gradient[1] * inverse(S) - inverse(S) * S_gradient[1] * Sigma};

            const std::array<TinyMatrix<Dimension>, Dimension>                                           //
              Sigma_gradient_new{TinyMatrix<Dimension>{0, 1. / std::sin(alpha - 1. / std::tan(alpha)),   //
                                                       0, -1},
                                 TinyMatrix<Dimension>{-1. / std::sin(alpha) + 1. / std::tan(alpha), 0,   //
                                                       1, 0}};
            const auto Sigma_gradient = Sigma_gradient_new;
            std::cout << "Sigma_gradient_old[0] = " << Sigma_gradient_old[0] << '\n';
            std::cout << "Sigma_gradient_new[0] = " << Sigma_gradient_new[0] << '\n';
            std::cout << "Sigma_gradient_old[1] = " << Sigma_gradient_old[1] << '\n';
            std::cout << "Sigma_gradient_new[1] = " << Sigma_gradient_new[1] << '\n';

            // TinyVector<Dimension> h_gradient = h / (h - sigma_list[i_cell]) * sigma_gradient;

            TinyVector<Dimension> g{trace(transpose(S) * S_gradient[0]) / S_norm2                   //
                                      + trace(transpose(Sigma) * Sigma_gradient[0]) / Sigma_norm2   //
                                      - trace(Sigma * S_gradient[0]) / (h - sigma),
                                    //
                                    trace(transpose(S) * S_gradient[1]) / S_norm2                   //
                                      + trace(transpose(Sigma) * Sigma_gradient[1]) / Sigma_norm2   //
                                      - trace(Sigma * S_gradient[1]) / (h - sigma)};

            const TinyVector<Dimension> f_jr_gradient = f_jr * g;
            TinyMatrix<Dimension> f_jr_hessian        = zero;
            for (size_t i = 0; i < Dimension; ++i) {
              for (size_t j = 0; j < Dimension; ++j) {
                f_jr_hessian(i, j) =                                           //
                  (trace(transpose(S_gradient[j]) * S_gradient[i]) / S_norm2   //
                   - 2 * trace(transpose(S) * S_gradient[j]) * trace(transpose(S) * S_gradient[i]) /
                       (S_norm2 * S_norm2)                                                   //
                                                                                             //
                   + trace(transpose(Sigma_gradient[j]) * Sigma_gradient[i]) / Sigma_norm2   // + 0
                   - 2 * trace(transpose(Sigma) * Sigma_gradient[j]) * trace(transpose(Sigma) * Sigma_gradient[i]) /
                       (Sigma_norm2 * Sigma_norm2)   //
                   //
                   - 2 * trace(Sigma_gradient[j] * S_gradient[i]) / (h - sigma)                                //
                   + 2 * trace(Sigma * S_gradient[i]) * sigma / (std::pow(h - sigma, 3)) * sigma_gradient[j]   //
                   + g[j] * g[i]) *
                  f_jr;
              }
            }

            f += f_jr;
            f_gradient += f_jr_gradient;
            f_hessian += f_jr_hessian;
          }

          std::cout << "f = " << f << '\n';
          std::cout << "grad(f) = " << f_gradient << '\n';
          std::cout << "hess(f) = " << f_hessian << " | hess(f)^T -hess(f) = " << transpose(f_hessian) - f_hessian
                    << '\n';

          std::cout << "inv(H)         = " << inverse(f_hessian) << '\n';
          std::cout << "inv(H)*grad(f) = " << inverse(f_hessian) * f_gradient << '\n';

          std::cout << rang::fgB::yellow << "x = " << x << " -> " << x - inverse(f_hessian) * f_gradient
                    << rang::fg::reset << '\n';

          std::cout << rang::fgB::green << i_iter << ": l2Norm(f_gradient) = " << l2Norm(f_gradient) << rang::fg::reset
                    << '\n';
          if (l2Norm(f_gradient) < 1E-6) {
            break;
          }

          x -= inverse(f_hessian) * f_gradient;

          final_f = f;
        }
        return final_f;
      };

      parallel_for(
        connectivity.numberOfNodes(), PUGS_LAMBDA(NodeId node_id) {
          // auto cell_list           = node_to_cell_matrix[node_id];
          // auto node_number_in_cell = node_number_in_their_cells[node_id];

          if (is_boundary_node[node_id]) {
            quality[node_id] = 1;
          } else {
            TinyVector x     = xr[node_id];
            quality[node_id] = f_inner(node_id, x);

            std::exit(0);

            // TinyMatrix<Dimension> B = identity;
          }
        });

      return std::make_shared<ItemValueVariant>(quality);
    } else {
      throw NotImplementedError("Dimension != 2");
    }
  }

  std::shared_ptr<const IMesh>
  getSmoothedMesh() const
  {
    NodeValue<const Rd> given_xr = m_given_mesh.xr();

    NodeValue<Rd> xr = this->_getDisplacement();

    parallel_for(
      m_given_mesh.numberOfNodes(), PUGS_LAMBDA(const NodeId node_id) { xr[node_id] += given_xr[node_id]; });

    return std::make_shared<MeshType>(m_given_mesh.shared_connectivity(), xr);
  }

  std::shared_ptr<const IMesh>
  getSmoothedMesh(const FunctionSymbolId& function_symbol_id) const
  {
    NodeValue<const Rd> given_xr = m_given_mesh.xr();

    NodeValue<const bool> is_displaced =
      InterpolateItemValue<bool(const Rd)>::interpolate(function_symbol_id, given_xr);

    NodeValue<Rd> xr = this->_getDisplacement();

    parallel_for(
      m_given_mesh.numberOfNodes(),
      PUGS_LAMBDA(const NodeId node_id) { xr[node_id] = is_displaced[node_id] * xr[node_id] + given_xr[node_id]; });

    return std::make_shared<MeshType>(m_given_mesh.shared_connectivity(), xr);
  }

  std::shared_ptr<const IMesh>
  getSmoothedMesh(const std::vector<std::shared_ptr<const IZoneDescriptor>>& zone_descriptor_list) const
  {
    NodeValue<const Rd> given_xr = m_given_mesh.xr();

    auto node_to_cell_matrix = m_given_mesh.connectivity().nodeToCellMatrix();

    NodeValue<bool> is_displaced{m_given_mesh.connectivity()};
    is_displaced.fill(false);

    for (size_t i_zone = 0; i_zone < zone_descriptor_list.size(); ++i_zone) {
      MeshCellZone<Dimension> cell_zone = getMeshCellZone(m_given_mesh, *zone_descriptor_list[i_zone]);
      const auto cell_list              = cell_zone.cellList();
      CellValue<bool> is_zone_cell{m_given_mesh.connectivity()};
      is_zone_cell.fill(false);
      parallel_for(
        cell_list.size(), PUGS_LAMBDA(const size_t i_cell) { is_zone_cell[cell_list[i_cell]] = true; });
      parallel_for(
        m_given_mesh.numberOfNodes(), PUGS_LAMBDA(const NodeId node_id) {
          auto node_cell_list = node_to_cell_matrix[node_id];
          bool displace       = true;
          for (size_t i_node_cell = 0; i_node_cell < node_cell_list.size(); ++i_node_cell) {
            const CellId cell_id = node_cell_list[i_node_cell];
            displace &= is_zone_cell[cell_id];
          }
          if (displace) {
            is_displaced[node_id] = true;
          }
        });
    }
    synchronize(is_displaced);
    NodeValue<Rd> xr = this->_getDisplacement();

    parallel_for(
      m_given_mesh.numberOfNodes(),
      PUGS_LAMBDA(const NodeId node_id) { xr[node_id] = is_displaced[node_id] * xr[node_id] + given_xr[node_id]; });

    return std::make_shared<MeshType>(m_given_mesh.shared_connectivity(), xr);
  }

  std::shared_ptr<const IMesh>
  getSmoothedMesh(
    const std::vector<std::shared_ptr<const DiscreteFunctionVariant>>& discrete_function_variant_list) const
  {
    NodeValue<const Rd> given_xr = m_given_mesh.xr();

    auto node_to_cell_matrix = m_given_mesh.connectivity().nodeToCellMatrix();

    NodeValue<bool> is_displaced{m_given_mesh.connectivity()};
    is_displaced.fill(false);

    for (size_t i_zone = 0; i_zone < discrete_function_variant_list.size(); ++i_zone) {
      auto is_zone_cell = discrete_function_variant_list[i_zone]->get<DiscreteFunctionP0<Dimension, const double>>();

      parallel_for(
        m_given_mesh.numberOfNodes(), PUGS_LAMBDA(const NodeId node_id) {
          auto node_cell_list = node_to_cell_matrix[node_id];
          bool displace       = true;
          for (size_t i_node_cell = 0; i_node_cell < node_cell_list.size(); ++i_node_cell) {
            const CellId cell_id = node_cell_list[i_node_cell];
            displace &= (is_zone_cell[cell_id] != 0);
          }
          if (displace) {
            is_displaced[node_id] = true;
          }
        });
    }
    synchronize(is_displaced);
    NodeValue<Rd> xr = this->_getDisplacement();

    parallel_for(
      m_given_mesh.numberOfNodes(),
      PUGS_LAMBDA(const NodeId node_id) { xr[node_id] = is_displaced[node_id] * xr[node_id] + given_xr[node_id]; });

    return std::make_shared<MeshType>(m_given_mesh.shared_connectivity(), xr);
  }

  MeshSmootherEscobar(const MeshSmootherEscobar&) = delete;
  MeshSmootherEscobar(MeshSmootherEscobar&&)      = delete;

  MeshSmootherEscobar(const MeshType& given_mesh,
                      const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list)
    : m_given_mesh(given_mesh), m_boundary_condition_list(this->_getBCList(given_mesh, bc_descriptor_list))
  {}

  ~MeshSmootherEscobar() = default;
};

template <size_t Dimension>
class MeshSmootherEscobarHandler::MeshSmootherEscobar<Dimension>::AxisBoundaryCondition
{
 public:
  using Rd = TinyVector<Dimension, double>;

 private:
  const MeshLineNodeBoundary<Dimension> m_mesh_line_node_boundary;

 public:
  const Rd&
  direction() const
  {
    return m_mesh_line_node_boundary.direction();
  }

  const Array<const NodeId>&
  nodeList() const
  {
    return m_mesh_line_node_boundary.nodeList();
  }

  AxisBoundaryCondition(MeshLineNodeBoundary<Dimension>&& mesh_line_node_boundary)
    : m_mesh_line_node_boundary(mesh_line_node_boundary)
  {
    ;
  }

  ~AxisBoundaryCondition() = default;
};

template <>
class MeshSmootherEscobarHandler::MeshSmootherEscobar<1>::AxisBoundaryCondition
{
 public:
  AxisBoundaryCondition()  = default;
  ~AxisBoundaryCondition() = default;
};

template <size_t Dimension>
class MeshSmootherEscobarHandler::MeshSmootherEscobar<Dimension>::FixedBoundaryCondition
{
 private:
  const MeshNodeBoundary<Dimension> m_mesh_node_boundary;

 public:
  const Array<const NodeId>&
  nodeList() const
  {
    return m_mesh_node_boundary.nodeList();
  }

  FixedBoundaryCondition(MeshNodeBoundary<Dimension>&& mesh_node_boundary) : m_mesh_node_boundary{mesh_node_boundary} {}

  ~FixedBoundaryCondition() = default;
};

template <size_t Dimension>
class MeshSmootherEscobarHandler::MeshSmootherEscobar<Dimension>::SymmetryBoundaryCondition
{
 public:
  using Rd = TinyVector<Dimension, double>;

 private:
  const MeshFlatNodeBoundary<Dimension> m_mesh_flat_node_boundary;

 public:
  const Rd&
  outgoingNormal() const
  {
    return m_mesh_flat_node_boundary.outgoingNormal();
  }

  const Array<const NodeId>&
  nodeList() const
  {
    return m_mesh_flat_node_boundary.nodeList();
  }

  SymmetryBoundaryCondition(MeshFlatNodeBoundary<Dimension>&& mesh_flat_node_boundary)
    : m_mesh_flat_node_boundary(mesh_flat_node_boundary)
  {
    ;
  }

  ~SymmetryBoundaryCondition() = default;
};

std::shared_ptr<const ItemValueVariant>
MeshSmootherEscobarHandler::getQuality(
  const std::shared_ptr<const IMesh>& mesh,
  const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list) const
{
  switch (mesh->dimension()) {
  case 1: {
    constexpr size_t Dimension = 1;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getQuality();
  }
  case 2: {
    constexpr size_t Dimension = 2;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getQuality();
  }
  case 3: {
    constexpr size_t Dimension = 3;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getQuality();
  }
  default: {
    throw UnexpectedError("invalid mesh dimension");
  }
  }
}

std::shared_ptr<const IMesh>
MeshSmootherEscobarHandler::getSmoothedMesh(
  const std::shared_ptr<const IMesh>& mesh,
  const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list) const
{
  switch (mesh->dimension()) {
  case 1: {
    constexpr size_t Dimension = 1;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh();
  }
  case 2: {
    constexpr size_t Dimension = 2;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh();
  }
  case 3: {
    constexpr size_t Dimension = 3;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh();
  }
  default: {
    throw UnexpectedError("invalid mesh dimension");
  }
  }
}

std::shared_ptr<const IMesh>
MeshSmootherEscobarHandler::getSmoothedMesh(
  const std::shared_ptr<const IMesh>& mesh,
  const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list,
  const FunctionSymbolId& function_symbol_id) const
{
  switch (mesh->dimension()) {
  case 1: {
    constexpr size_t Dimension = 1;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh(function_symbol_id);
  }
  case 2: {
    constexpr size_t Dimension = 2;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh(function_symbol_id);
  }
  case 3: {
    constexpr size_t Dimension = 3;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh(function_symbol_id);
  }
  default: {
    throw UnexpectedError("invalid mesh dimension");
  }
  }
}

std::shared_ptr<const IMesh>
MeshSmootherEscobarHandler::getSmoothedMesh(
  const std::shared_ptr<const IMesh>& mesh,
  const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list,
  const std::vector<std::shared_ptr<const IZoneDescriptor>>& smoothing_zone_list) const
{
  switch (mesh->dimension()) {
  case 1: {
    constexpr size_t Dimension = 1;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh(smoothing_zone_list);
  }
  case 2: {
    constexpr size_t Dimension = 2;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh(smoothing_zone_list);
  }
  case 3: {
    constexpr size_t Dimension = 3;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh(smoothing_zone_list);
  }
  default: {
    throw UnexpectedError("invalid mesh dimension");
  }
  }
}

std::shared_ptr<const IMesh>
MeshSmootherEscobarHandler::getSmoothedMesh(
  const std::shared_ptr<const IMesh>& mesh,
  const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list,
  const std::vector<std::shared_ptr<const DiscreteFunctionVariant>>& discrete_function_variant_list) const
{
  if (not hasSameMesh(discrete_function_variant_list)) {
    throw NormalError("discrete functions are not defined on the same mesh");
  }

  std::shared_ptr<const IMesh> common_mesh = getCommonMesh(discrete_function_variant_list);

  if (common_mesh != mesh) {
    throw NormalError("discrete functions are not defined on the smoothed mesh");
  }

  switch (mesh->dimension()) {
  case 1: {
    constexpr size_t Dimension = 1;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh(discrete_function_variant_list);
  }
  case 2: {
    constexpr size_t Dimension = 2;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh(discrete_function_variant_list);
  }
  case 3: {
    constexpr size_t Dimension = 3;
    using MeshType             = Mesh<Connectivity<Dimension>>;
    MeshSmootherEscobar smoother(dynamic_cast<const MeshType&>(*mesh), bc_descriptor_list);
    return smoother.getSmoothedMesh(discrete_function_variant_list);
  }
  default: {
    throw UnexpectedError("invalid mesh dimension");
  }
  }
}