#include <iostream>
#include <Kokkos_Core.hpp>
#include <RevisionInfo.hpp>
#include <rang.hpp>
#include <FPEManager.hpp>
#include <SignalManager.hpp>
#include <ConsoleManager.hpp>

// #include <RawKokkosAcousticSolver.hpp>
// #include <MeshLessAcousticSolver.hpp>
// #include <AcousticSolverClass.hpp>
// #include <AcousticSolverTest.hpp>

#include <Connectivity1D.hpp>
#include <Mesh.hpp>
#include <AcousticSolver.hpp>
#include <FiniteVolumesDiffusion.hpp>

#include <TinyVector.hpp>
#include <TinyMatrix.hpp>

#include <CLI/CLI.hpp>
#include <cassert>
#include <limits>
#include <map>

int main(int argc, char *argv[])
{
  long unsigned number = 10;

  {
    CLI::App app{"Pastis help"};

    app.add_option("number,-n,--number", number, "Number of cells");//->required();

    int threads=-1;
    app.add_option("--threads", threads, "Number of Kokkos threads")->check(CLI::Range(1,std::numeric_limits<decltype(threads)>::max()));

    std::string colorize="auto";
    app.add_set("--colorize", colorize, {"auto", "yes", "no"}, "Colorize console output", true);

    bool disable_fpe = false;
    app.add_flag("--no-fpe", disable_fpe, "Do not trap floating point exceptions");
    bool disable_signals = false;
    app.add_flag("--no-signal", disable_signals, "Do not catches signals");

    std::string pause_on_error="auto";
    app.add_set("--pause-on-error", pause_on_error, {"auto", "yes", "no"}, "Pause for debugging on unexpected error", true);

    std::atexit([](){std::cout << rang::style::reset;});
    try {
      app.parse(argc, argv);
    } catch (const CLI::ParseError &e) {
      return app.exit(e);
    }

    ConsoleManager::init(colorize);
    FPEManager::init(not disable_fpe);
    SignalManager::setPauseForDebug(pause_on_error);
    SignalManager::init(not disable_signals);
  }
  
  std::cout << "Code version: "
	    << rang::style::bold << RevisionInfo::version() << rang::style::reset << '\n';

  std::cout << "-------------------- "
	    << rang::fg::green
	    << "git info"
	    << rang::fg::reset
	    <<" -------------------------"
	    << '\n';
  std::cout << "tag:  " << rang::fg::reset
	    << rang::style::bold << RevisionInfo::gitTag() << rang::style::reset << '\n';
  std::cout << "HEAD: " << rang::style::bold << RevisionInfo::gitHead() << rang::style::reset << '\n';
  std::cout << "hash: " << rang::style::bold << RevisionInfo::gitHash() << rang::style::reset << "  (";

  if (RevisionInfo::gitIsClean()) {
    std::cout << rang::fgB::green << "clean" << rang::fg::reset;
  } else {
    std::cout << rang::fgB::red << "dirty" << rang::fg::reset; 
  }
  std::cout << ")\n";
  std::cout << "-------------------------------------------------------\n";

  Kokkos::initialize(argc, argv);
  Kokkos::DefaultExecutionSpace::print_configuration(std::cout);

  std::map<std::string, double> method_cost_map;

  // { // Basic function based acoustic solver
  //   Kokkos::Timer timer;
  //   timer.reset();
  //   RawKokkos::AcousticSolver(number);
  //   method_cost_map["RawKokkos"] = timer.seconds();
  // }

  // { // class for acoustic solver (mesh less)
  //   Kokkos::Timer timer;
  //   timer.reset();
  //   MeshLessAcousticSolver acoustic_solver(number);
  //   method_cost_map["MeshLessAcousticSolver"] = timer.seconds();
  // }

  // { // class for acoustic solver
  //   Kokkos::Timer timer;
  //   timer.reset();
  //   AcousticSolverClass acoustic_solver(number);
  //   method_cost_map["AcousticSolverClass"] = timer.seconds();
  // }

  // { // class for acoustic solver test
  //   Kokkos::Timer timer;
  //   timer.reset();
  //   AcousticSolverTest acoustic_solver(number);
  //   method_cost_map["AcousticSolverTest"] = timer.seconds();
  // }


  { 
    Kokkos::Timer timer;
    timer.reset();
    Connectivity1D connectivity(number);
    typedef Mesh<Connectivity1D> MeshType;
    typedef MeshData<MeshType> MeshDataType;
    typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType;

    MeshType mesh(connectivity);
    MeshDataType mesh_data(mesh);
    UnknownsType unknowns(mesh_data);

    unknowns.initializeSod();

    AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns);
    FiniteVolumesDiffusion<MeshDataType> finite_volumes_diffusion(mesh_data, unknowns);

    typedef TinyVector<MeshType::dimension> Rd;

    const Kokkos::View<const double*> Vj = mesh_data.Vj();
    const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr();

    const double tmax=0.2;
    double t=0;

    int itermax=std::numeric_limits<int>::max();
    int iteration=0;

    Kokkos::View<double*> rhoj = unknowns.rhoj();
    Kokkos::View<double*> ej = unknowns.ej();
    Kokkos::View<double*> pj = unknowns.pj();
    Kokkos::View<double*> gammaj = unknowns.gammaj();
    Kokkos::View<double*> cj = unknowns.cj();
    Kokkos::View<double*> kj = unknowns.kj();

    BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj);

    while((t<tmax) and (iteration<itermax)) {

      // ETAPE 1 DU SPLITTING - EULER

      double dt_euler = 0.4*acoustic_solver.acoustic_dt(Vj, cj);

      if (t+dt_euler > tmax) {
	dt_euler = tmax-t;
      }
      acoustic_solver.computeNextStep(t,dt_euler, unknowns);

      // ETAPE 2 DU SPLITTING - DIFFUSION

      double dt_diff = finite_volumes_diffusion.diffusion_dt(rhoj, kj);
      std::cout << dt_euler << ' ' << dt_diff << std::endl;
      if (dt_euler <= dt_diff) {
	dt_diff = dt_euler;
	finite_volumes_diffusion.computeNextStep(t, dt_diff, unknowns);
	t += dt_euler;
      } else {
	double t_diff = t + dt_diff;
	while (t + dt_euler > t_diff) {
	  finite_volumes_diffusion.computeNextStep(t_diff, dt_diff, unknowns);
	  dt_diff = 0.4*finite_volumes_diffusion.diffusion_dt(rhoj, kj);
	  t_diff += dt_diff;
	  std::cout << t_diff << '\n';
	}
	t = t_diff;
      }
      
      block_eos.updatePandCFromRhoE();    
    
      ++iteration;
      std::cout << "temps t : " << t << std::endl;
    }
    

    std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset
	      << ":  " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n";

    /*
    double error = 0.;
    error = finite_volumes_diffusion.error_L2_u(unknowns);

    std::cout << "* " << rang::style::underline << "Erreur L2 u" << rang::style::reset
	      << ":  " << rang::fgB::green << error << rang::fg::reset << " \n";

    
    double error2 = 0.;
    error2 = finite_volumes_diffusion.error_Linf(unknowns);

    std::cout << "* " << rang::style::underline << "Erreur L infini u" << rang::style::reset
	      << ":  " << rang::fgB::green << error2 << rang::fg::reset << " \n";
    

    double error3 = 0.;
    error3 = finite_volumes_diffusion.error_L2_E(unknowns);

    std::cout << "* " << rang::style::underline << "Erreur L2 E" << rang::style::reset
	      << ":  " << rang::fgB::green << error3 << rang::fg::reset << " \n";
    */
    
    double cons = 0.;
    cons = finite_volumes_diffusion.conservatif(unknowns);

    std::cout << "* " << rang::style::underline << "Resultat conservativite" << rang::style::reset
	      << ":  " << rang::fgB::green << cons << rang::fg::reset << " \n";
    

    //method_cost_map["AcousticSolverWithMesh"] = timer.seconds();
    method_cost_map["FiniteVolumesDiffusionWithMesh"] = timer.seconds();
    
    { // gnuplot output for density
     const Kokkos::View<const Rd*> xj   = mesh_data.xj();
     const Kokkos::View<const Rd*> uj = unknowns.uj();
     std::ofstream fout("resultat rho");
     fout.precision(15);
     for (size_t j=0; j<mesh.numberOfCells(); ++j) {
       fout << xj[j][0] << ' ' << rhoj[j] << '\n';
     }
     }
    
     { // gnuplot output for vitesse
     const Kokkos::View<const Rd*> xj   = mesh_data.xj();
     const Kokkos::View<const Rd*> uj = unknowns.uj();
     // double pi = 4.*std::atan(1.);
     std::ofstream fout("resultat u");
     fout.precision(15);
     for (size_t j=0; j<mesh.numberOfCells(); ++j) {
       //fout << xj[j][0] << ' ' << uj[j][0] <<  ' ' << std::sin(pi*xj[j][0])*std::exp(-2.*pi*pi*0.2) <<'\n'; //cas k constant
       //fout << xj[j][0] << ' ' << uj[j][0] <<  ' ' << std::sin(pi*xj[j][0])*std::exp(-0.2) <<'\n'; // cas k non constant
       fout << xj[j][0] << ' ' << uj[j][0] << '\n';
     }
     }

     { // gnuplot output for energy
     const Kokkos::View<const Rd*> xj   = mesh_data.xj();
     const Kokkos::View<const double*> Ej = unknowns.Ej();
     //double pi = 4.*std::atan(1.);
     std::ofstream fout("resultat E");
     fout.precision(15);
     for (size_t j=0; j<mesh.numberOfCells(); ++j) {
       //fout << xj[j][0] << ' ' << Ej[j] << ' ' << (-(std::cos(pi*xj[j][0])*std::cos(pi*xj[j][0]))+(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0])))*0.5*(std::exp(-4.*pi*pi*0.2)-1.) + 2. <<'\n'; // cas k constant
       //fout << xj[j][0] << ' ' << Ej[j] << ' ' << ((xj[j][0]*pi*pi*0.5)*(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0]) - std::cos(xj[j][0]*pi)*std::cos(pi*xj[j][0])) - pi*0.5*std::sin(pi*xj[j][0])*std::cos(pi*xj[j][0]))*(std::exp(-2.*0.2)-1.) + 2. <<'\n' ; // cas k non constant
       fout << xj[j][0] << ' ' << Ej[j] << '\n';
     }
     }

  }

  Kokkos::finalize();

  std::cout << "----------------------\n";

  std::string::size_type size=0;
  for (const auto& method_cost : method_cost_map) {
    size = std::max(size, method_cost.first.size());
  }

  for (const auto& method_cost : method_cost_map) {
    std::cout << "* ["
      	      << rang::fgB::cyan
	      << std::setw(size) << std::left
	      << method_cost.first
	      << rang::fg::reset
	      << "] Execution time: "
	      << rang::style::bold
	      << method_cost.second
	      << rang::style::reset << '\n';
  }
  
  return 0;
}