#include <scheme/reconstruction_utils/BoundaryIntegralReconstructionMatrixBuilder.hpp> #include <analysis/GaussLegendreQuadratureDescriptor.hpp> #include <analysis/QuadratureManager.hpp> #include <geometry/SymmetryUtils.hpp> #include <mesh/Connectivity.hpp> #include <mesh/Mesh.hpp> #include <mesh/MeshDataManager.hpp> #include <scheme/DiscreteFunctionDPk.hpp> template <MeshConcept MeshTypeT> template <typename ConformTransformationT> void PolynomialReconstruction::BoundaryIntegralReconstructionMatrixBuilder<MeshTypeT>::_computeEjkBoundaryMean( const QuadratureFormula<MeshType::Dimension - 1>& quadrature, const ConformTransformationT& T, const Rd& Xj, const double inv_Vi, SmallArray<double>& mean_of_ejk) { const double velocity_perp_e1 = T.velocity()[1] * inv_Vi; for (size_t i_q = 0; i_q < quadrature.numberOfPoints(); ++i_q) { const double wq = quadrature.weight(i_q); const TinyVector<1> xi_q = quadrature.point(i_q); const Rd X_Xj = T(xi_q) - Xj; const double x_xj = X_Xj[0]; const double y_yj = X_Xj[1]; { size_t k = 0; m_inv_Vj_alpha_p_1_wq_X_prime_orth_ek[k++] = x_xj * wq * velocity_perp_e1; for (; k <= m_polynomial_degree; ++k) { m_inv_Vj_alpha_p_1_wq_X_prime_orth_ek[k] = x_xj * m_inv_Vj_alpha_p_1_wq_X_prime_orth_ek[k - 1] * m_antiderivative_coef[k]; // ((1. * k) / (k + 1)); } for (size_t i_y = 1; i_y <= m_polynomial_degree; ++i_y) { const size_t begin_i_y_1 = ((i_y - 1) * (2 * m_polynomial_degree - i_y + 4)) / 2; for (size_t l = 0; l <= m_polynomial_degree - i_y; ++l) { m_inv_Vj_alpha_p_1_wq_X_prime_orth_ek[k++] = y_yj * m_inv_Vj_alpha_p_1_wq_X_prime_orth_ek[begin_i_y_1 + l]; } } } for (size_t k = 1; k < m_basis_dimension; ++k) { mean_of_ejk[k - 1] += m_inv_Vj_alpha_p_1_wq_X_prime_orth_ek[k]; } } } template <MeshConcept MeshTypeT> void PolynomialReconstruction::BoundaryIntegralReconstructionMatrixBuilder<MeshTypeT>::_computeEjkMeanByBoundary( const Rd& Xj, const CellId& cell_id, SmallArray<double>& mean_of_ejk) { const auto& quadrature = QuadratureManager::instance().getLineFormula(GaussLegendreQuadratureDescriptor(m_polynomial_degree + 1)); const double inv_Vi = 1. / m_Vj[cell_id]; mean_of_ejk.fill(0); auto cell_face_list = m_cell_to_face_matrix[cell_id]; for (size_t i_face = 0; i_face < cell_face_list.size(); ++i_face) { bool is_reversed = m_cell_face_is_reversed[cell_id][i_face]; const FaceId face_id = cell_face_list[i_face]; auto face_node_list = m_face_to_node_matrix[face_id]; if (is_reversed) { const LineTransformation<2> T{m_xr[face_node_list[1]], m_xr[face_node_list[0]]}; _computeEjkBoundaryMean(quadrature, T, Xj, inv_Vi, mean_of_ejk); } else { const LineTransformation<2> T{m_xr[face_node_list[0]], m_xr[face_node_list[1]]}; _computeEjkBoundaryMean(quadrature, T, Xj, inv_Vi, mean_of_ejk); } } } template <MeshConcept MeshTypeT> void PolynomialReconstruction::BoundaryIntegralReconstructionMatrixBuilder< MeshTypeT>::_computeEjkMeanByBoundaryInSymmetricCell(const Rd& origin, const Rd& normal, const Rd& Xj, const CellId& cell_id, SmallArray<double>& mean_of_ejk) { const auto& quadrature = QuadratureManager::instance().getLineFormula(GaussLegendreQuadratureDescriptor(m_polynomial_degree + 1)); const double inv_Vi = 1. / m_Vj[cell_id]; mean_of_ejk.fill(0); auto cell_face_list = m_cell_to_face_matrix[cell_id]; for (size_t i_face = 0; i_face < cell_face_list.size(); ++i_face) { bool is_reversed = m_cell_face_is_reversed[cell_id][i_face]; const FaceId face_id = cell_face_list[i_face]; auto face_node_list = m_face_to_node_matrix[face_id]; const auto x0 = symmetrize_coordinates(origin, normal, m_xr[face_node_list[1]]); const auto x1 = symmetrize_coordinates(origin, normal, m_xr[face_node_list[0]]); if (is_reversed) { const LineTransformation<2> T{x1, x0}; _computeEjkBoundaryMean(quadrature, T, Xj, inv_Vi, mean_of_ejk); } else { const LineTransformation<2> T{x0, x1}; _computeEjkBoundaryMean(quadrature, T, Xj, inv_Vi, mean_of_ejk); } } } template <MeshConcept MeshTypeT> void PolynomialReconstruction::BoundaryIntegralReconstructionMatrixBuilder<MeshTypeT>::build( const CellId cell_j_id, ShrinkMatrixView<SmallMatrix<double>>& A) { if constexpr (MeshType::Dimension == 2) { const auto& stencil_cell_list = m_stencil_array[cell_j_id]; const Rd& Xj = m_xj[cell_j_id]; _computeEjkMeanByBoundary(Xj, cell_j_id, m_mean_j_of_ejk); size_t index = 0; for (size_t i = 0; i < stencil_cell_list.size(); ++i, ++index) { const CellId cell_i_id = stencil_cell_list[i]; _computeEjkMeanByBoundary(Xj, cell_i_id, m_mean_i_of_ejk); for (size_t l = 0; l < m_basis_dimension - 1; ++l) { A(index, l) = m_mean_i_of_ejk[l] - m_mean_j_of_ejk[l]; } } for (size_t i_symmetry = 0; i_symmetry < m_stencil_array.symmetryBoundaryStencilArrayList().size(); ++i_symmetry) { auto& ghost_stencil = m_stencil_array.symmetryBoundaryStencilArrayList()[i_symmetry].stencilArray(); auto ghost_cell_list = ghost_stencil[cell_j_id]; const Rd& origin = m_symmetry_origin_list[i_symmetry]; const Rd& normal = m_symmetry_normal_list[i_symmetry]; for (size_t i = 0; i < ghost_cell_list.size(); ++i, ++index) { const CellId cell_i_id = ghost_cell_list[i]; _computeEjkMeanByBoundaryInSymmetricCell(origin, normal, Xj, cell_i_id, m_mean_i_of_ejk); for (size_t l = 0; l < m_basis_dimension - 1; ++l) { A(index, l) = m_mean_i_of_ejk[l] - m_mean_j_of_ejk[l]; } } } } else { throw NotImplementedError("invalid mesh dimension"); } } template <MeshConcept MeshTypeT> PolynomialReconstruction::BoundaryIntegralReconstructionMatrixBuilder< MeshTypeT>::BoundaryIntegralReconstructionMatrixBuilder(const MeshType& mesh, const size_t polynomial_degree, const SmallArray<const Rd>& symmetry_origin_list, const SmallArray<const Rd>& symmetry_normal_list, const CellToCellStencilArray& stencil_array) : m_mesh{mesh}, m_basis_dimension{ DiscreteFunctionDPk<MeshType::Dimension, double>::BasisViewType::dimensionFromDegree(polynomial_degree)}, m_polynomial_degree{polynomial_degree}, m_inv_Vj_alpha_p_1_wq_X_prime_orth_ek{m_basis_dimension}, m_mean_j_of_ejk{m_basis_dimension - 1}, m_mean_i_of_ejk{m_basis_dimension - 1}, m_cell_to_face_matrix{mesh.connectivity().cellToFaceMatrix()}, m_face_to_node_matrix{mesh.connectivity().faceToNodeMatrix()}, m_cell_face_is_reversed{mesh.connectivity().cellFaceIsReversed()}, m_stencil_array{stencil_array}, m_symmetry_origin_list{symmetry_origin_list}, m_symmetry_normal_list{symmetry_normal_list}, m_Vj{MeshDataManager::instance().getMeshData(mesh).Vj()}, m_xj{MeshDataManager::instance().getMeshData(mesh).xj()}, m_xr{mesh.xr()} { if constexpr (MeshType::Dimension == 2) { SmallArray<double> antiderivative_coef(m_polynomial_degree + 1); for (size_t k = 0; k < antiderivative_coef.size(); ++k) { antiderivative_coef[k] = ((1. * k) / (k + 1)); } m_antiderivative_coef = antiderivative_coef; } } template void PolynomialReconstruction::BoundaryIntegralReconstructionMatrixBuilder<Mesh<2>>::build( const CellId, ShrinkMatrixView<SmallMatrix<double>>&); template PolynomialReconstruction::BoundaryIntegralReconstructionMatrixBuilder< Mesh<2>>::BoundaryIntegralReconstructionMatrixBuilder(const MeshType&, const size_t, const SmallArray<const Rd>&, const SmallArray<const Rd>&, const CellToCellStencilArray&);