#ifndef AFFECTATION_PROCESSOR_HPP
#define AFFECTATION_PROCESSOR_HPP

#include <language/PEGGrammar.hpp>
#include <language/node_processor/INodeProcessor.hpp>
#include <language/utils/ParseError.hpp>
#include <language/utils/SymbolTable.hpp>
#include <utils/Exceptions.hpp>
#include <utils/PugsTraits.hpp>

template <typename Op>
struct AffOp;

template <>
struct AffOp<language::multiplyeq_op>
{
  template <typename A, typename B>
  PUGS_INLINE void
  eval(A& a, const B& b)
  {
    a *= b;
  }
};

template <>
struct AffOp<language::divideeq_op>
{
  template <typename A, typename B>
  PUGS_INLINE void
  eval(A& a, const B& b)
  {
    a /= b;
  }
};

template <>
struct AffOp<language::pluseq_op>
{
  template <typename A, typename B>
  PUGS_INLINE void
  eval(A& a, const B& b)
  {
    a += b;
  }
};

template <>
struct AffOp<language::minuseq_op>
{
  template <typename A, typename B>
  PUGS_INLINE void
  eval(A& a, const B& b)
  {
    a -= b;
  }
};

struct IAffectationExecutor
{
  virtual void affect(ExecutionPolicy& exec_policy, DataVariant&& rhs) = 0;

  IAffectationExecutor(const IAffectationExecutor&) = delete;
  IAffectationExecutor(IAffectationExecutor&&)      = delete;

  IAffectationExecutor() = default;

  virtual ~IAffectationExecutor() = default;
};

template <typename OperatorT, typename ValueT, typename DataT>
class AffectationExecutor final : public IAffectationExecutor
{
 private:
  ValueT& m_lhs;

  static inline const bool m_is_defined{[] {
    if constexpr (std::is_same_v<std::decay_t<ValueT>, bool>) {
      if constexpr (not std::is_same_v<OperatorT, language::eq_op>) {
        return false;
      }
    }
    return true;
  }()};

 public:
  AffectationExecutor(ASTNode& node, ValueT& lhs) : m_lhs(lhs)
  {
    // LCOV_EXCL_START
    if constexpr (not m_is_defined) {
      throw ParseError("unexpected error: invalid operands to affectation expression", std::vector{node.begin()});
    }
    // LCOV_EXCL_STOP
  }

  PUGS_INLINE void
  affect(ExecutionPolicy&, DataVariant&& rhs)
  {
    if constexpr (m_is_defined) {
      if constexpr (not std::is_same_v<DataT, ZeroType>) {
        if constexpr (std::is_same_v<ValueT, std::string>) {
          if constexpr (std::is_same_v<OperatorT, language::eq_op>) {
            if constexpr (std::is_same_v<std::string, DataT>) {
              m_lhs = std::get<DataT>(rhs);
            } else if constexpr (std::is_arithmetic_v<DataT>) {
              m_lhs = std::to_string(std::get<DataT>(rhs));
            } else {
              std::ostringstream os;
              os << std::get<DataT>(rhs) << std::ends;
              m_lhs = os.str();
            }
          } else {
            if constexpr (std::is_same_v<std::string, DataT>) {
              m_lhs += std::get<std::string>(rhs);
            } else if constexpr (std::is_arithmetic_v<DataT>) {
              m_lhs += std::to_string(std::get<DataT>(rhs));
            } else {
              std::ostringstream os;
              os << std::get<DataT>(rhs) << std::ends;
              m_lhs += os.str();
            }
          }
        } else {
          if constexpr (std::is_same_v<OperatorT, language::eq_op>) {
            if constexpr (std::is_convertible_v<ValueT, DataT>) {
              m_lhs = std::get<DataT>(rhs);
            } else if constexpr (std::is_same_v<DataT, AggregateDataVariant>) {
              const AggregateDataVariant& v = std::get<AggregateDataVariant>(rhs);
              static_assert(is_tiny_vector_v<ValueT>, "expecting lhs TinyVector");
              for (size_t i = 0; i < m_lhs.dimension(); ++i) {
                std::visit(
                  [&](auto&& vi) {
                    using Vi_T = std::decay_t<decltype(vi)>;
                    if constexpr (std::is_convertible_v<Vi_T, double>) {
                      m_lhs[i] = vi;
                    } else {
                      // LCOV_EXCL_START
                      throw UnexpectedError("unexpected rhs type in affectation");
                      // LCOV_EXCL_STOP
                    }
                  },
                  v[i]);
              }
            } else if constexpr (std::is_same_v<TinyVector<1>, ValueT>) {
              std::visit(
                [&](auto&& v) {
                  using Vi_T = std::decay_t<decltype(v)>;
                  if constexpr (std::is_convertible_v<Vi_T, double>) {
                    m_lhs = v;
                  } else {
                    // LCOV_EXCL_START
                    throw UnexpectedError("unexpected rhs type in affectation");
                    // LCOV_EXCL_STOP
                  }
                },
                rhs);
            }
          } else {
            AffOp<OperatorT>().eval(m_lhs, std::get<DataT>(rhs));
          }
        }
      } else if (std::is_same_v<OperatorT, language::eq_op>) {
        m_lhs = ValueT{zero};
      } else {
        static_assert(std::is_same_v<OperatorT, language::eq_op>, "unexpected operator type");
      }
    }
  }
};

template <typename OperatorT, typename ArrayT, typename ValueT, typename DataT>
class ComponentAffectationExecutor final : public IAffectationExecutor
{
 private:
  ArrayT& m_lhs_array;
  ASTNode& m_index_expression;

  static inline const bool m_is_defined{[] {
    if constexpr (not std::is_same_v<typename ArrayT::data_type, ValueT>) {
      return false;
    } else if constexpr (std::is_same_v<std::decay_t<ValueT>, bool>) {
      if constexpr (not std::is_same_v<OperatorT, language::eq_op>) {
        return false;
      }
    }
    return true;
  }()};

 public:
  ComponentAffectationExecutor(ASTNode& node, ArrayT& lhs_array, ASTNode& index_expression)
    : m_lhs_array{lhs_array}, m_index_expression{index_expression}
  {
    // LCOV_EXCL_START
    if constexpr (not m_is_defined) {
      throw ParseError("unexpected error: invalid operands to affectation expression", std::vector{node.begin()});
    }
    // LCOV_EXCL_STOP
  }

  PUGS_INLINE void
  affect(ExecutionPolicy& exec_policy, DataVariant&& rhs)
  {
    if constexpr (m_is_defined) {
      const int64_t index_value = [&](DataVariant&& value_variant) -> int64_t {
        int64_t index_value = 0;
        std::visit(
          [&](auto&& value) {
            using IndexValueT = std::decay_t<decltype(value)>;
            if constexpr (std::is_integral_v<IndexValueT>) {
              index_value = value;
            } else {
              // LCOV_EXCL_START
              throw ParseError("unexpected error: invalid index type", std::vector{m_index_expression.begin()});
              // LCOV_EXCL_STOP
            }
          },
          value_variant);
        return index_value;
      }(m_index_expression.execute(exec_policy));

      if constexpr (std::is_same_v<ValueT, std::string>) {
        if constexpr (std::is_same_v<OperatorT, language::eq_op>) {
          if constexpr (std::is_same_v<std::string, DataT>) {
            m_lhs_array[index_value] = std::get<DataT>(rhs);
          } else {
            m_lhs_array[index_value] = std::to_string(std::get<DataT>(rhs));
          }
        } else {
          if constexpr (std::is_same_v<std::string, DataT>) {
            m_lhs_array[index_value] += std::get<std::string>(rhs);
          } else {
            m_lhs_array[index_value] += std::to_string(std::get<DataT>(rhs));
          }
        }
      } else {
        if constexpr (std::is_same_v<OperatorT, language::eq_op>) {
          if constexpr (std::is_same_v<ValueT, DataT>) {
            m_lhs_array[index_value] = std::get<DataT>(rhs);
          } else {
            m_lhs_array[index_value] = static_cast<ValueT>(std::get<DataT>(rhs));
          }
        } else {
          AffOp<OperatorT>().eval(m_lhs_array[index_value], std::get<DataT>(rhs));
        }
      }
    }
  }
};

template <typename OperatorT, typename ValueT, typename DataT>
class AffectationProcessor final : public INodeProcessor
{
 private:
  ASTNode& m_node;

  std::unique_ptr<IAffectationExecutor> m_affectation_executor;

 public:
  DataVariant
  execute(ExecutionPolicy& exec_policy)
  {
    m_affectation_executor->affect(exec_policy, m_node.children[1]->execute(exec_policy));

    return {};
  }

  AffectationProcessor(ASTNode& node) : m_node{node}
  {
    if (node.children[0]->is_type<language::name>()) {
      const std::string& symbol = m_node.children[0]->string();
      auto [i_symbol, found]    = m_node.m_symbol_table->find(symbol, m_node.children[0]->begin());
      Assert(found);
      DataVariant& value = i_symbol->attributes().value();

      if (not std::holds_alternative<ValueT>(value)) {
        value = ValueT{};
      }

      using AffectationExecutorT = AffectationExecutor<OperatorT, ValueT, DataT>;
      m_affectation_executor     = std::make_unique<AffectationExecutorT>(m_node, std::get<ValueT>(value));
    } else if (node.children[0]->is_type<language::subscript_expression>()) {
      auto& array_subscript_expression = *node.children[0];

      auto& array_expression = *array_subscript_expression.children[0];
      Assert(array_expression.is_type<language::name>());

      const std::string& symbol = array_expression.string();

      auto [i_symbol, found] = m_node.m_symbol_table->find(symbol, array_subscript_expression.begin());
      Assert(found);
      DataVariant& value = i_symbol->attributes().value();

      // LCOV_EXCL_START
      if (array_expression.m_data_type != ASTNodeDataType::vector_t) {
        throw ParseError("unexpected error: invalid lhs (expecting R^d)",
                         std::vector{array_subscript_expression.begin()});
      }
      // LCOV_EXCL_STOP

      auto& index_expression = *array_subscript_expression.children[1];

      switch (array_expression.m_data_type.dimension()) {
      case 1: {
        using ArrayTypeT = TinyVector<1>;
        if (not std::holds_alternative<ArrayTypeT>(value)) {
          value = ArrayTypeT{};
        }
        using AffectationExecutorT = ComponentAffectationExecutor<OperatorT, ArrayTypeT, ValueT, DataT>;
        m_affectation_executor =
          std::make_unique<AffectationExecutorT>(node, std::get<ArrayTypeT>(value), index_expression);
        break;
      }
      case 2: {
        using ArrayTypeT = TinyVector<2>;
        if (not std::holds_alternative<ArrayTypeT>(value)) {
          value = ArrayTypeT{};
        }
        using AffectationExecutorT = ComponentAffectationExecutor<OperatorT, ArrayTypeT, ValueT, DataT>;
        m_affectation_executor =
          std::make_unique<AffectationExecutorT>(node, std::get<ArrayTypeT>(value), index_expression);
        break;
      }
      case 3: {
        using ArrayTypeT = TinyVector<3>;
        if (not std::holds_alternative<ArrayTypeT>(value)) {
          value = ArrayTypeT{};
        }
        using AffectationExecutorT = ComponentAffectationExecutor<OperatorT, ArrayTypeT, ValueT, DataT>;
        m_affectation_executor =
          std::make_unique<AffectationExecutorT>(node, std::get<ArrayTypeT>(value), index_expression);
        break;
      }
        // LCOV_EXCL_START
      default: {
        throw ParseError("unexpected error: invalid vector dimension", std::vector{array_subscript_expression.begin()});
      }
        // LCOV_EXCL_STOP
      }

    } else {
      // LCOV_EXCL_START
      throw ParseError("unexpected error: invalid lhs", std::vector{node.children[0]->begin()});
      // LCOV_EXCL_STOP
    }
  }
};

template <typename OperatorT, typename ValueT>
class AffectationToTinyVectorFromListProcessor final : public INodeProcessor
{
 private:
  ASTNode& m_node;

  DataVariant* m_lhs;

 public:
  DataVariant
  execute(ExecutionPolicy& exec_policy)
  {
    AggregateDataVariant children_values = std::get<AggregateDataVariant>(m_node.children[1]->execute(exec_policy));

    static_assert(std::is_same_v<OperatorT, language::eq_op>, "forbidden affection operator for list to vectors");

    ValueT v;
    for (size_t i = 0; i < v.dimension(); ++i) {
      std::visit(
        [&](auto&& child_value) {
          using T = std::decay_t<decltype(child_value)>;
          if constexpr (std::is_same_v<T, bool> or std::is_same_v<T, uint64_t> or std::is_same_v<T, int64_t> or
                        std::is_same_v<T, double>) {
            v[i] = child_value;
          } else {
            // LCOV_EXCL_START
            throw ParseError("unexpected error: unexpected right hand side type in affectation", m_node.begin());
            // LCOV_EXCL_STOP
          }
        },
        children_values[i]);
    }

    *m_lhs = v;
    return {};
  }

  AffectationToTinyVectorFromListProcessor(ASTNode& node) : m_node{node}
  {
    const std::string& symbol = m_node.children[0]->string();
    auto [i_symbol, found]    = m_node.m_symbol_table->find(symbol, m_node.children[0]->begin());
    Assert(found);

    m_lhs = &i_symbol->attributes().value();
  }
};

template <typename OperatorT, typename ValueT>
class AffectationToTupleProcessor final : public INodeProcessor
{
 private:
  ASTNode& m_node;

  DataVariant* m_lhs;

 public:
  DataVariant
  execute(ExecutionPolicy& exec_policy)
  {
    static_assert(std::is_same_v<OperatorT, language::eq_op>, "forbidden affection operator to tuples");
    DataVariant value = m_node.children[1]->execute(exec_policy);

    std::visit(
      [&](auto&& v) {
        using T = std::decay_t<decltype(v)>;
        if constexpr (std::is_same_v<T, ValueT>) {
          *m_lhs = std::vector{std::move(v)};
        } else if constexpr (std::is_arithmetic_v<ValueT> and std::is_convertible_v<T, ValueT>) {
          *m_lhs = std::vector{std::move(static_cast<ValueT>(v))};
        } else if constexpr (std::is_same_v<std::string, ValueT>) {
          if constexpr (std::is_arithmetic_v<T>) {
            *m_lhs = std::vector{std::move(std::to_string(v))};
          } else {
            std::ostringstream os;
            os << v << std::ends;
            *m_lhs = std::vector<std::string>{os.str()};
          }
        } else if constexpr (std::is_same_v<ValueT, TinyVector<1>> and std::is_arithmetic_v<T>) {
          *m_lhs = std::vector<TinyVector<1>>{TinyVector<1>{static_cast<double>(v)}};
        } else if constexpr (std::is_same_v<ValueT, TinyVector<2>> and std::is_same_v<T, int64_t>) {
          Assert(v == 0);
          *m_lhs = std::vector<TinyVector<2>>{TinyVector<2>{zero}};
        } else if constexpr (std::is_same_v<ValueT, TinyVector<3>> and std::is_same_v<T, int64_t>) {
          Assert(v == 0);
          *m_lhs = std::vector<TinyVector<3>>{TinyVector<3>{zero}};
        } else {
          // LCOV_EXCL_START
          throw ParseError("unexpected error: unexpected right hand side type in affectation", m_node.begin());
          // LCOV_EXCL_STOP
        }
      },
      value);

    return {};
  }

  AffectationToTupleProcessor(ASTNode& node) : m_node{node}
  {
    const std::string& symbol = m_node.children[0]->string();
    auto [i_symbol, found]    = m_node.m_symbol_table->find(symbol, m_node.children[0]->begin());
    Assert(found);

    m_lhs = &i_symbol->attributes().value();
  }
};

template <typename OperatorT, typename ValueT>
class AffectationToTupleFromListProcessor final : public INodeProcessor
{
 private:
  ASTNode& m_node;

  DataVariant* m_lhs;

  void
  _copyAggregateDataVariant(const AggregateDataVariant& children_values)
  {
    std::vector<ValueT> tuple_value(children_values.size());
    for (size_t i = 0; i < children_values.size(); ++i) {
      std::visit(
        [&](auto&& child_value) {
          using T = std::decay_t<decltype(child_value)>;
          if constexpr (std::is_same_v<T, ValueT>) {
            tuple_value[i] = child_value;
          } else if constexpr (std::is_arithmetic_v<ValueT> and std::is_convertible_v<T, ValueT>) {
            tuple_value[i] = static_cast<ValueT>(child_value);
          } else if constexpr (std::is_same_v<std::string, ValueT>) {
            if constexpr (std::is_arithmetic_v<T>) {
              tuple_value[i] = std::to_string(child_value);
            } else {
              std::ostringstream os;
              os << child_value << std::ends;
              tuple_value[i] = os.str();
            }
          } else if constexpr (is_tiny_vector_v<ValueT>) {
            if constexpr (std::is_same_v<T, AggregateDataVariant>) {
              ValueT& v = tuple_value[i];
              Assert(ValueT::Dimension == child_value.size());
              for (size_t j = 0; j < ValueT::Dimension; ++j) {
                std::visit(
                  [&](auto&& vj) {
                    using Ti = std::decay_t<decltype(vj)>;
                    if constexpr (std::is_convertible_v<Ti, typename ValueT::data_type>) {
                      v[j] = vj;
                    } else {
                      // LCOV_EXCL_START
                      throw ParseError("unexpected error: unexpected right hand side type in affectation",
                                       m_node.children[1]->children[i]->begin());
                      // LCOV_EXCL_STOP
                    }
                  },
                  child_value[j]);
              }
            } else if constexpr (std::is_same_v<T, int64_t>) {
              if constexpr (std::is_same_v<ValueT, TinyVector<1>>) {
                tuple_value[i][0] = child_value;
              } else {
                // in this case a 0 is given
                Assert(child_value == 0);
                tuple_value[i] = ZeroType{};
              }
            } else {
              // LCOV_EXCL_START
              throw ParseError("unexpected error: unexpected right hand side type in affectation",
                               m_node.children[1]->children[i]->begin());
              // LCOV_EXCL_STOP
            }
          } else {
            // LCOV_EXCL_START
            throw ParseError("unexpected error: unexpected right hand side type in affectation",
                             m_node.children[1]->children[i]->begin());
            // LCOV_EXCL_STOP
          }
        },
        children_values[i]);
    }
    *m_lhs = std::move(tuple_value);
  }

  template <typename DataType>
  void
  _copyVector(const std::vector<DataType>& values)
  {
    std::vector<ValueT> v(values.size());
    if constexpr (std::is_same_v<ValueT, DataType>) {
      for (size_t i = 0; i < values.size(); ++i) {
        v[i] = values[i];
      }
    } else if constexpr (std::is_arithmetic_v<ValueT> and std::is_convertible_v<DataType, ValueT>) {
      for (size_t i = 0; i < values.size(); ++i) {
        v[i] = static_cast<DataType>(values[i]);
      }
    } else if constexpr (std::is_same_v<ValueT, std::string>) {
      if constexpr (std::is_arithmetic_v<DataType>) {
        for (size_t i = 0; i < values.size(); ++i) {
          v[i] = std::to_string(values[i]);
        }
      } else {
        for (size_t i = 0; i < values.size(); ++i) {
          std::ostringstream sout;
          sout << values[i] << std::ends;
          v[i] = sout.str();
        }
      }
    } else {
      // LCOV_EXCL_START
      throw ParseError("unexpected error: unexpected right hand side type in tuple affectation",
                       m_node.children[1]->begin());
      // LCOV_EXCL_STOP
    }

    *m_lhs = std::move(v);
  }

 public:
  DataVariant
  execute(ExecutionPolicy& exec_policy)
  {
    static_assert(std::is_same_v<OperatorT, language::eq_op>, "forbidden affection operator for list to tuple");

    std::visit(
      [&](auto&& value_list) {
        using ValueListT = std::decay_t<decltype(value_list)>;
        if constexpr (std::is_same_v<AggregateDataVariant, ValueListT>) {
          this->_copyAggregateDataVariant(value_list);
        } else if constexpr (is_std_vector_v<ValueListT>) {
          this->_copyVector(value_list);
        } else {
          // LCOV_EXCL_START
          throw ParseError("unexpected error: invalid lhs (expecting list or tuple)",
                           std::vector{m_node.children[1]->begin()});
          // LCOV_EXCL_STOP
        }
      },
      m_node.children[1]->execute(exec_policy));

    return {};
  }

  AffectationToTupleFromListProcessor(ASTNode& node) : m_node{node}
  {
    const std::string& symbol = m_node.children[0]->string();
    auto [i_symbol, found]    = m_node.m_symbol_table->find(symbol, m_node.children[0]->begin());
    Assert(found);

    m_lhs = &i_symbol->attributes().value();
  }
};

template <typename ValueT>
class AffectationFromZeroProcessor final : public INodeProcessor
{
 private:
  ASTNode& m_node;

  DataVariant* m_lhs;

 public:
  DataVariant
  execute(ExecutionPolicy&)
  {
    *m_lhs = ValueT{zero};
    return {};
  }

  AffectationFromZeroProcessor(ASTNode& node) : m_node{node}
  {
    const std::string& symbol = m_node.children[0]->string();
    auto [i_symbol, found]    = m_node.m_symbol_table->find(symbol, m_node.children[0]->begin());
    Assert(found);

    m_lhs = &i_symbol->attributes().value();
  }
};

template <typename OperatorT>
class ListAffectationProcessor final : public INodeProcessor
{
 private:
  ASTNode& m_node;

  std::vector<std::unique_ptr<IAffectationExecutor>> m_affectation_executor_list;

 public:
  template <typename ValueT, typename DataT>
  void
  add(ASTNode& lhs_node)
  {
    using AffectationExecutorT = AffectationExecutor<OperatorT, ValueT, DataT>;

    if (lhs_node.is_type<language::name>()) {
      const std::string& symbol = lhs_node.string();
      auto [i_symbol, found]    = m_node.m_symbol_table->find(symbol, m_node.children[0]->end());
      Assert(found);
      DataVariant& value = i_symbol->attributes().value();

      if (not std::holds_alternative<ValueT>(value)) {
        value = ValueT{};
      }

      m_affectation_executor_list.emplace_back(std::make_unique<AffectationExecutorT>(m_node, std::get<ValueT>(value)));
    } else if (lhs_node.is_type<language::subscript_expression>()) {
      auto& array_subscript_expression = lhs_node;

      auto& array_expression = *array_subscript_expression.children[0];
      Assert(array_expression.is_type<language::name>());

      const std::string& symbol = array_expression.string();

      auto [i_symbol, found] = m_node.m_symbol_table->find(symbol, array_subscript_expression.begin());
      Assert(found);
      DataVariant& value = i_symbol->attributes().value();

      if (array_expression.m_data_type != ASTNodeDataType::vector_t) {
        // LCOV_EXCL_START
        throw ParseError("unexpected error: invalid lhs (expecting R^d)",
                         std::vector{array_subscript_expression.begin()});
        // LCOV_EXCL_STOP
      }

      auto& index_expression = *array_subscript_expression.children[1];

      switch (array_expression.m_data_type.dimension()) {
      case 1: {
        using ArrayTypeT = TinyVector<1>;
        if (not std::holds_alternative<ArrayTypeT>(value)) {
          value = ArrayTypeT{};
        }
        using AffectationExecutorT = ComponentAffectationExecutor<OperatorT, ArrayTypeT, ValueT, DataT>;
        m_affectation_executor_list.emplace_back(
          std::make_unique<AffectationExecutorT>(lhs_node, std::get<ArrayTypeT>(value), index_expression));
        break;
      }
      case 2: {
        using ArrayTypeT = TinyVector<2>;
        if (not std::holds_alternative<ArrayTypeT>(value)) {
          value = ArrayTypeT{};
        }
        using AffectationExecutorT = ComponentAffectationExecutor<OperatorT, ArrayTypeT, ValueT, DataT>;
        m_affectation_executor_list.emplace_back(
          std::make_unique<AffectationExecutorT>(lhs_node, std::get<ArrayTypeT>(value), index_expression));
        break;
      }
      case 3: {
        using ArrayTypeT = TinyVector<3>;
        if (not std::holds_alternative<ArrayTypeT>(value)) {
          value = ArrayTypeT{};
        }
        using AffectationExecutorT = ComponentAffectationExecutor<OperatorT, ArrayTypeT, ValueT, DataT>;
        m_affectation_executor_list.emplace_back(
          std::make_unique<AffectationExecutorT>(lhs_node, std::get<ArrayTypeT>(value), index_expression));
        break;
      }
        // LCOV_EXCL_START
      default: {
        throw ParseError("unexpected error: invalid vector dimension", std::vector{array_subscript_expression.begin()});
      }
        // LCOV_EXCL_STOP
      }
    } else {
      // LCOV_EXCL_START
      throw ParseError("unexpected error: invalid left hand side", std::vector{lhs_node.begin()});
      // LCOV_EXCL_STOP
    }
  }

  DataVariant
  execute(ExecutionPolicy& exec_policy)
  {
    AggregateDataVariant children_values = std::get<AggregateDataVariant>(m_node.children[1]->execute(exec_policy));
    Assert(m_affectation_executor_list.size() == children_values.size());

    for (size_t i = 0; i < m_affectation_executor_list.size(); ++i) {
      m_affectation_executor_list[i]->affect(exec_policy, std::move(children_values[i]));
    }

    return {};
  }

  ListAffectationProcessor(ASTNode& node) : m_node{node} {}
};

#endif   // AFFECTATION_PROCESSOR_HPP