#include <iostream> #include <fstream> #include <iomanip> #include <Kokkos_Core.hpp> #include <RevisionInfo.hpp> #include <rang.hpp> #include <FPEManager.hpp> #include <SignalManager.hpp> #include <ConsoleManager.hpp> #include <string> #include <cmath> // #include <RawKokkosAcousticSolver.hpp> // #include <MeshLessAcousticSolver.hpp> // #include <AcousticSolverClass.hpp> // #include <AcousticSolverTest.hpp> #include <Connectivity1D.hpp> #include <Mesh.hpp> #include <AcousticSolver.hpp> #include <FiniteVolumesDiffusion.hpp> #include <TinyVector.hpp> #include <TinyMatrix.hpp> #include <CLI/CLI.hpp> #include <cassert> #include <limits> #include <map> int main(int argc, char *argv[]) { long unsigned number = 10; { CLI::App app{"Pastis help"}; app.add_option("number,-n,--number", number, "Number of cells");//->required(); int threads=-1; app.add_option("--threads", threads, "Number of Kokkos threads")->check(CLI::Range(1,std::numeric_limits<decltype(threads)>::max())); std::string colorize="auto"; app.add_set("--colorize", colorize, {"auto", "yes", "no"}, "Colorize console output", true); bool disable_fpe = false; app.add_flag("--no-fpe", disable_fpe, "Do not trap floating point exceptions"); bool disable_signals = false; app.add_flag("--no-signal", disable_signals, "Do not catches signals"); std::string pause_on_error="auto"; app.add_set("--pause-on-error", pause_on_error, {"auto", "yes", "no"}, "Pause for debugging on unexpected error", true); std::atexit([](){std::cout << rang::style::reset;}); try { app.parse(argc, argv); } catch (const CLI::ParseError &e) { return app.exit(e); } ConsoleManager::init(colorize); FPEManager::init(not disable_fpe); SignalManager::setPauseForDebug(pause_on_error); SignalManager::init(not disable_signals); } std::cout << "Code version: " << rang::style::bold << RevisionInfo::version() << rang::style::reset << '\n'; std::cout << "-------------------- " << rang::fg::green << "git info" << rang::fg::reset <<" -------------------------" << '\n'; std::cout << "tag: " << rang::fg::reset << rang::style::bold << RevisionInfo::gitTag() << rang::style::reset << '\n'; std::cout << "HEAD: " << rang::style::bold << RevisionInfo::gitHead() << rang::style::reset << '\n'; std::cout << "hash: " << rang::style::bold << RevisionInfo::gitHash() << rang::style::reset << " ("; if (RevisionInfo::gitIsClean()) { std::cout << rang::fgB::green << "clean" << rang::fg::reset; } else { std::cout << rang::fgB::red << "dirty" << rang::fg::reset; } std::cout << ")\n"; std::cout << "-------------------------------------------------------\n"; Kokkos::initialize(argc, argv); Kokkos::DefaultExecutionSpace::print_configuration(std::cout); std::map<std::string, double> method_cost_map; // { // Basic function based acoustic solver // Kokkos::Timer timer; // timer.reset(); // RawKokkos::AcousticSolver(number); // method_cost_map["RawKokkos"] = timer.seconds(); // } // { // class for acoustic solver (mesh less) // Kokkos::Timer timer; // timer.reset(); // MeshLessAcousticSolver acoustic_solver(number); // method_cost_map["MeshLessAcousticSolver"] = timer.seconds(); // } // { // class for acoustic solver // Kokkos::Timer timer; // timer.reset(); // AcousticSolverClass acoustic_solver(number); // method_cost_map["AcousticSolverClass"] = timer.seconds(); // } // { // class for acoustic solver test // Kokkos::Timer timer; // timer.reset(); // AcousticSolverTest acoustic_solver(number); // method_cost_map["AcousticSolverTest"] = timer.seconds(); // } { Kokkos::Timer timer; timer.reset(); Connectivity1D connectivity(number); typedef Mesh<Connectivity1D> MeshType; typedef MeshData<MeshType> MeshDataType; typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType; MeshType mesh(connectivity); MeshDataType mesh_data(mesh); UnknownsType unknowns(mesh_data); unknowns.initializeSod(); AcousticSolver<MeshDataType> acoustic_solver(mesh_data, unknowns); FiniteVolumesDiffusion<MeshDataType> finite_volumes_diffusion(mesh_data, unknowns); typedef TinyVector<MeshType::dimension> Rd; const Kokkos::View<const double*> Vj = mesh_data.Vj(); const Kokkos::View<const Rd**> Cjr = mesh_data.Cjr(); const double tmax=0.2; double t=0.; int itermax=std::numeric_limits<int>::max(); int iteration=0; Kokkos::View<double*> rhoj = unknowns.rhoj(); Kokkos::View<double*> ej = unknowns.ej(); Kokkos::View<double*> pj = unknowns.pj(); Kokkos::View<double*> gammaj = unknowns.gammaj(); Kokkos::View<double*> cj = unknowns.cj(); Kokkos::View<double*> kj = unknowns.kj(); Kokkos::View<double*> nuj = unknowns.nuj(); Kokkos::View<Rd*> uj = unknowns.uj(); BlockPerfectGas block_eos(rhoj, ej, pj, gammaj, cj); double c = 0.; c = finite_volumes_diffusion.conservatif(unknowns); /* // Ecriture des valeurs initiales dans un fichier const Kokkos::View<const Rd*> xj = mesh_data.xj(); const Kokkos::View<const Rd*> xr = mesh.xr(); // rho std::ofstream fout1("inter1", std::ios::trunc); fout1.precision(15); for (size_t j=0; j<mesh.numberOfCells(); ++j) { fout1 << std::fixed << xj[j][0] << ' ' << std::fixed << rhoj[j] << '\n'; } fout1.close(); // u std::ofstream fout2("inter2", std::ios::trunc); fout2.precision(15); for (size_t j=0; j<mesh.numberOfCells(); ++j) { fout2 << std::fixed << xj[j][0] << ' ' << std::fixed << uj[j][0] << '\n'; } fout2.close(); // e std::ofstream fout3("inter3", std::ios::trunc); fout3.precision(15); for (size_t j=0; j<mesh.numberOfCells(); ++j) { fout3 << std::fixed << xj[j][0] << ' ' << std::fixed << ej[j] << '\n'; } fout3.close(); // p std::ofstream fout4("inter4", std::ios::trunc); fout4.precision(15); for (size_t j=0; j<mesh.numberOfCells(); ++j) { fout4 << std::fixed << xj[j][0] << ' ' << std::fixed << pj[j] << '\n'; } fout4.close(); // S std::ofstream fout5("inter5", std::ios::trunc); fout5.precision(15); for (size_t j=0; j<mesh.numberOfCells(); ++j) { fout5 << std::fixed << xj[j][0] << ' ' << std::fixed << std::log(pj[j]*std::pow(rhoj[j],-gammaj[j])) << '\n'; } fout5.close(); // derivee de u std::ofstream fout6("inter6", std::ios::trunc); fout6.precision(15); // en 1D : mesh.numberOfNodes() = mesh.numberOfCells() - 1 for (size_t j=0; j<mesh.numberOfNodes()-2; ++j) { fout6 << std::fixed << xj[j][0] << ' ' << std::fixed << (uj[j+1][0]-uj[j][0])/(xr[j+2][0]-xr[j+1][0]) << '\n'; } fout6.close(); // derivee de p std::ofstream fout7("inter7", std::ios::trunc); fout7.precision(15); for (size_t j=0; j<mesh.numberOfNodes()-2; ++j) { fout7 << std::fixed << xj[j][0] << ' ' << std::fixed << (pj[j+1]-pj[j])/(xr[j+2][0]-xr[j+1][0]) << '\n'; } fout7.close(); // derivee de rho std::ofstream fout8("inter8", std::ios::trunc); fout8.precision(15); for (size_t j=0; j<mesh.numberOfNodes()-2; ++j) { fout8 << std::fixed << xj[j][0] << ' ' << std::fixed << (rhoj[j+1]-rhoj[j])/(xr[j+2][0]-xr[j+1][0]) << '\n'; } fout8.close(); // terme baroclyne std::ofstream fout9("inter9", std::ios::trunc); fout9.precision(15); for (size_t j=0; j<mesh.numberOfNodes()-2; ++j) { fout9 << std::fixed << xj[j][0] << ' ' << std::fixed << (((rhoj[j+1]-rhoj[j])/(xr[j+2][0]-xr[j+1][0]))*((pj[j+1]-pj[j])/(xr[j+2][0]-xr[j+1][0])))/(rhoj[j]*rhoj[j]) << '\n'; } fout9.close(); // Fichier temps std::ofstream tempo("temps"); tempo.precision(5); tempo << std::fixed << t << '\n'; tempo.close(); // Fichier k indicateur std::ofstream diff("diffinter"); diff.precision(5); for (size_t j=0; j<mesh.numberOfCells(); ++j) { diff << std::fixed << xj[j][0] << ' ' << std::fixed << kj[j] << '\n'; if (kj[j]>0.) { diff << std::fixed << xj[j][0] << ' ' << std::fixed << 4. << '\n'; } else { diff << std::fixed << xj[j][0] << ' ' << std::fixed << -0.1 << '\n'; } } diff.close(); */ while((t<tmax) and (iteration<itermax)) { /* // ETAPE 1 DU SPLITTING - EULER double dt_euler = 0.4*acoustic_solver.acoustic_dt(Vj, cj); if (t+dt_euler > tmax) { dt_euler = tmax-t; } acoustic_solver.computeNextStep(t,dt_euler, unknowns); t += dt_euler; // ETAPE 2 DU SPLITTING - DIFFUSION double dt_diff = 0.9*finite_volumes_diffusion.diffusion_dt(rhoj, kj, cj); double t_diff = t-dt_euler; if (dt_euler <= dt_diff) { dt_diff = dt_euler; finite_volumes_diffusion.computeNextStep(t_diff, dt_diff, unknowns); } else { while (t > t_diff) { dt_diff = 0.9*finite_volumes_diffusion.diffusion_dt(rhoj, kj, cj); if (t_diff+dt_diff > t) { dt_diff = t-t_diff; } finite_volumes_diffusion.computeNextStep(t_diff, dt_diff, unknowns); t_diff += dt_diff; } } */ // AUTRE APPROCHE DU SPLITTING (PLUS LONG) /* double dt_euler = 0.4*acoustic_solver.acoustic_dt(Vj, cj); double dt_diff = 0.9*finite_volumes_diffusion.diffusion_dt(rhoj, kj, cj); double dt = 0.; if (dt_euler < dt_diff) { dt = dt_euler; } else { dt = dt_diff; } if (t+dt > tmax) { dt = tmax-t; } acoustic_solver.computeNextStep(t,dt, unknowns); finite_volumes_diffusion.computeNextStep(t, dt, unknowns); t += dt; */ // DIFFUSION PURE double dt = 0.4*finite_volumes_diffusion.diffusion_dt(rhoj,kj,nuj,cj); if (t+dt > tmax) { dt = tmax-t; } finite_volumes_diffusion.computeNextStep(t, dt, unknowns); t += dt; block_eos.updatePandCFromRhoE(); ++iteration; std::cout << "temps t : " << t << std::endl; /* // ECRITURE DANS UN FICHIER if ((std::fmod(t,0.01) < 0.0001) or (t == tmax)) { std::string ligne; // rho std::ifstream fint1("inter1"); std::ofstream fout1("film_rho", std::ios::trunc); fout1.precision(15); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(fint1, ligne); fout1 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << rhoj[j] << '\n'; } fint1.close(); fout1.close(); std::ifstream rint1("film_rho"); std::ofstream rout1("inter1", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(rint1, ligne); rout1 << ligne << '\n'; } rint1.close(); rout1.close(); // u std::ifstream fint2("inter2"); std::ofstream fout2("film_u", std::ios::trunc); fout2.precision(15); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(fint2, ligne); fout2 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << uj[j][0] << '\n'; } fint2.close(); fout2.close(); std::ifstream rint2("film_u"); std::ofstream rout2("inter2", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(rint2, ligne); rout2 << ligne << '\n'; } rint2.close(); rout2.close(); // e std::ifstream fint3("inter3"); std::ofstream fout3("film_e", std::ios::trunc); fout3.precision(15); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(fint3, ligne); fout3 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << ej[j] << '\n'; } fint3.close(); fout3.close(); std::ifstream rint3("film_e"); std::ofstream rout3("inter3", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(rint3, ligne); rout3 << ligne << '\n'; } rint3.close(); rout3.close(); // p std::ifstream fint4("inter4"); std::ofstream fout4("film_p", std::ios::trunc); fout4.precision(15); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(fint4, ligne); fout4 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << pj[j] << '\n'; } fint4.close(); fout4.close(); std::ifstream rint4("film_p"); std::ofstream rout4("inter4", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(rint4, ligne); rout4 << ligne << '\n'; } rint4.close(); rout4.close(); // S std::ifstream fint5("inter5"); std::ofstream fout5("film_S", std::ios::trunc); fout5.precision(15); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(fint5, ligne); fout5 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << std::log(pj[j]*std::pow(rhoj[j],-gammaj[j])) << '\n'; } fint5.close(); fout5.close(); std::ifstream rint5("film_S"); std::ofstream rout5("inter5", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(rint5, ligne); rout5 << ligne << '\n'; } rint5.close(); rout5.close(); // derivee de u std::ifstream fint6("inter6"); std::ofstream fout6("film_du", std::ios::trunc); fout6.precision(15); for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) { getline(fint6, ligne); fout6 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << (uj[j+1][0]-uj[j][0])/(xr[j+2][0]-xr[j+1][0]) << '\n'; } fint6.close(); fout6.close(); std::ifstream rint6("film_du"); std::ofstream rout6("inter6", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) { getline(rint6, ligne); rout6 << ligne << '\n'; } rint6.close(); rout6.close(); // derivee de p std::ifstream fint7("inter7"); std::ofstream fout7("film_dp", std::ios::trunc); fout7.precision(15); for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) { getline(fint7, ligne); fout7 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << (pj[j+1]-pj[j])/(xr[j+2][0]-xr[j+1][0]) << '\n'; } fint7.close(); fout7.close(); std::ifstream rint7("film_dp"); std::ofstream rout7("inter7", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) { getline(rint7, ligne); rout7 << ligne << '\n'; } rint7.close(); rout7.close(); // derivee de rho std::ifstream fint8("inter8"); std::ofstream fout8("film_drho", std::ios::trunc); fout8.precision(15); for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) { getline(fint8, ligne); fout8 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << (rhoj[j+1]-rhoj[j])/(xr[j+2][0]-xr[j+1][0]) << '\n'; } fint8.close(); fout8.close(); std::ifstream rint8("film_drho"); std::ofstream rout8("inter8", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) { getline(rint8, ligne); rout8 << ligne << '\n'; } rint8.close(); rout8.close(); // terme baroclyne std::ifstream fint9("inter9"); std::ofstream fout9("film_baro", std::ios::trunc); fout9.precision(15); for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) { getline(fint9, ligne); fout9 << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << (((rhoj[j+1]-rhoj[j])/(xr[j+2][0]-xr[j+1][0]))*((pj[j+1]-pj[j])/(xr[j+2][0]-xr[j+1][0])))/(rhoj[j]*rhoj[j])<< '\n'; } fint9.close(); fout9.close(); std::ifstream rint9("film_baro"); std::ofstream rout9("inter9", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfNodes()-2; ++j) { getline(rint9, ligne); rout9 << ligne << '\n'; } rint9.close(); rout9.close(); // Fichier temps std::ofstream tempo("temps", std::ios::app); tempo.precision(5); tempo << std::fixed << t << '\n'; tempo.close(); // Fichier k indicateur std::ifstream diffint("diffinter"); std::ofstream diffout("k", std::ios::trunc); diffout.precision(5); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(diffint, ligne); //diffout << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << kj[j] << '\n'; if (kj[j]>0.) { diffout << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << 4. << '\n'; } else { diffout << ligne << ' ' << std::fixed << xj[j][0] << ' ' << std::fixed << -0.1 << '\n'; } } diffint.close(); diffout.close(); std::ifstream riffint("k"); std::ofstream riffout("diffinter", std::ios::trunc); for (size_t j = 0; j<mesh.numberOfCells(); ++j) { getline(riffint, ligne); riffout << ligne << '\n'; } riffint.close(); riffout.close(); } */ // ENTROPY TEST //finite_volumes_diffusion.entropie(unknowns); } std::cout << "* " << rang::style::underline << "Final time" << rang::style::reset << ": " << rang::fgB::green << t << rang::fg::reset << " (" << iteration << " iterations)\n"; /* double error1 = 0.; error1 = finite_volumes_diffusion.error_L2_rho(unknowns, tmax); std::cout << "* " << rang::style::underline << "Erreur L2 rho" << rang::style::reset << ": " << rang::fgB::green << error1 << rang::fg::reset << " \n"; double error2 = 0.; error2 = finite_volumes_diffusion.error_Linf_rho(unknowns, tmax); std::cout << "* " << rang::style::underline << "Erreur L infini rho" << rang::style::reset << ": " << rang::fgB::green << error2 << rang::fg::reset << " \n"; double error = 0.; error = finite_volumes_diffusion.error_L2_u(unknowns, tmax); std::cout << "* " << rang::style::underline << "Erreur L2 u" << rang::style::reset << ": " << rang::fgB::green << error << rang::fg::reset << " \n"; double error4 = 0.; error4 = finite_volumes_diffusion.error_Linf_u(unknowns, tmax); std::cout << "* " << rang::style::underline << "Erreur L infini u" << rang::style::reset << ": " << rang::fgB::green << error4 << rang::fg::reset << " \n"; */ /* double error3 = 0.; error3 = finite_volumes_diffusion.error_L2_E(unknowns); std::cout << "* " << rang::style::underline << "Erreur L2 E" << rang::style::reset << ": " << rang::fgB::green << error3 << rang::fg::reset << " \n"; */ std::cout << "* " << rang::style::underline << "Resultat conservativite rho E temps = 0" << rang::style::reset << ": " << rang::fgB::green << c << rang::fg::reset << " \n"; double cons = 0.; cons = finite_volumes_diffusion.conservatif(unknowns); std::cout << "* " << rang::style::underline << "Resultat conservativite rho E" << rang::style::reset << ": " << rang::fgB::green << cons << rang::fg::reset << " \n"; //method_cost_map["AcousticSolverWithMesh"] = timer.seconds(); method_cost_map["FiniteVolumesDiffusionWithMesh"] = timer.seconds(); { // gnuplot output for density const Kokkos::View<const Rd*> xj = mesh_data.xj(); const Kokkos::View<const double*> rhoj = unknowns.rhoj(); //double h = std::sqrt(1. - (tmax*tmax)/(50./9.)); std::ofstream fout("rho"); fout.precision(15); for (size_t j=0; j<mesh.numberOfCells(); ++j) { //fout << xj[j][0] << ' ' << rhoj[j] << ' ' << std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h << '\n'; // kidder fout << xj[j][0] << ' ' << rhoj[j] << '\n'; } } { // gnuplot output for vitesse const Kokkos::View<const Rd*> xj = mesh_data.xj(); const Kokkos::View<const Rd*> uj = unknowns.uj(); double pi = 4.*std::atan(1.); std::ofstream fout("u"); fout.precision(15); for (size_t j=0; j<mesh.numberOfCells(); ++j) { //fout << xj[j][0] << ' ' << uj[j][0] << ' ' << std::sin(pi*xj[j][0])*std::exp(-2.*pi*pi*0.2) <<'\n'; //cas k constant fout << xj[j][0] << ' ' << uj[j][0] << ' ' << std::sin(pi*xj[j][0])*std::exp(-tmax) <<'\n'; // cas k non constant //fout << xj[j][0] << ' ' << uj[j][0] << ' ' << -(xj[j][0]*tmax)/((50./9.)-tmax*tmax) << '\n'; // kidder //fout << xj[j][0] << ' ' << uj[j][0] << '\n'; } } { // gnuplot output for energy const Kokkos::View<const Rd*> xj = mesh_data.xj(); const Kokkos::View<const double*> Ej = unknowns.Ej(); double pi = 4.*std::atan(1.); //double h = std::sqrt(1. - (tmax*tmax)/(50./9.)); std::ofstream fout("E"); fout.precision(15); for (size_t j=0; j<mesh.numberOfCells(); ++j) { //fout << xj[j][0] << ' ' << Ej[j] << ' ' << (-(std::cos(pi*xj[j][0])*std::cos(pi*xj[j][0]))+(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0])))*0.5*(std::exp(-4.*pi*pi*0.2)-1.) + 2. <<'\n'; // cas k constant fout << xj[j][0] << ' ' << Ej[j] << ' ' << ((xj[j][0]*pi*pi*0.5)*(std::sin(pi*xj[j][0])*std::sin(pi*xj[j][0]) - std::cos(xj[j][0]*pi)*std::cos(pi*xj[j][0])) - pi*0.5*std::sin(pi*xj[j][0])*std::cos(pi*xj[j][0]))*(std::exp(-2.*tmax)-1.) + 2. <<'\n' ; // cas k non constant //fout << xj[j][0] << ' ' << Ej[j] << ' ' << (std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h)*(std::sqrt((3.*((xj[j][0]*xj[j][0])/(h*h)) + 100.)/100.)/h) + (-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*(-(xj[j][0]*tmax)/((50./9.)-tmax*tmax))*0.5 << '\n'; // kidder //fout << xj[j][0] << ' ' << Ej[j] << '\n'; } } /* { // gnuplot output for entropy (gaz parfait en prenant cv = 1)) const Kokkos::View<const Rd*> xj = mesh_data.xj(); const Kokkos::View<const double*> rhoj = unknowns.rhoj(); const Kokkos::View<const double*> pj = unknowns.pj(); const Kokkos::View<const double*> gammaj = unknowns.gammaj(); const Kokkos::View<const double*> S0 = unknowns.S0(); std::ofstream fout("S"); fout.precision(15); for (size_t j=0; j<mesh.numberOfCells(); ++j) { fout << xj[j][0] << ' ' << std::log(pj[j]*std::pow(rhoj[j],-gammaj[j])) << ' ' << S0(j) << '\n'; } } */ } Kokkos::finalize(); std::cout << "----------------------\n"; std::string::size_type size=0; for (const auto& method_cost : method_cost_map) { size = std::max(size, method_cost.first.size()); } for (const auto& method_cost : method_cost_map) { std::cout << "* [" << rang::fgB::cyan << std::setw(size) << std::left << method_cost.first << rang::fg::reset << "] Execution time: " << rang::style::bold << method_cost.second << rang::style::reset << '\n'; } return 0; }