#include <iostream> #include <Kokkos_Core.hpp> #include <RevisionInfo.hpp> #include <rang.hpp> #include <FPEManager.hpp> #include <SignalManager.hpp> #include <ConsoleManager.hpp> #include <RawKokkosAcousticSolver.hpp> #include <MeshLessAcousticSolver.hpp> #include <AcousticSolver.hpp> #include <AcousticSolverTest.hpp> #include <Connectivity1D.hpp> #include <AcousticSolverWithMesh.hpp> #include <TinyVector.hpp> #include <TinyMatrix.hpp> #include <CLI/CLI.hpp> #include <cassert> #include <limits> #include <map> int main(int argc, char *argv[]) { long unsigned number = 10; { CLI::App app{"Pastis help"}; app.add_option("number,-n,--number", number, "Number of cells");//->required(); int threads=-1; app.add_option("--threads", threads, "Number of Kokkos threads")->check(CLI::Range(1,std::numeric_limits<decltype(threads)>::max())); std::string colorize="auto"; app.add_set("--colorize", colorize, {"auto", "yes", "no"}, "Colorize console output", true); bool disable_fpe = false; app.add_flag("--no-fpe", disable_fpe, "Do not trap floating point exceptions"); bool disable_signals = false; app.add_flag("--no-signal", disable_signals, "Do not catches signals"); std::string pause_on_error="auto"; app.add_set("--pause-on-error", pause_on_error, {"auto", "yes", "no"}, "Pause for debugging on unexpected error", true); std::atexit([](){std::cout << rang::style::reset;}); try { app.parse(argc, argv); } catch (const CLI::ParseError &e) { return app.exit(e); } ConsoleManager::init(colorize); FPEManager::init(not disable_fpe); SignalManager::setPauseForDebug(pause_on_error); SignalManager::init(not disable_signals); } std::cout << "Code version: " << rang::style::bold << RevisionInfo::version() << rang::style::reset << '\n'; std::cout << "-------------------- " << rang::fg::green << "git info" << rang::fg::reset <<" -------------------------" << '\n'; std::cout << "tag: " << rang::fg::reset << rang::style::bold << RevisionInfo::gitTag() << rang::style::reset << '\n'; std::cout << "HEAD: " << rang::style::bold << RevisionInfo::gitHead() << rang::style::reset << '\n'; std::cout << "hash: " << rang::style::bold << RevisionInfo::gitHash() << rang::style::reset << " ("; if (RevisionInfo::gitIsClean()) { std::cout << rang::fgB::green << "clean" << rang::fg::reset; } else { std::cout << rang::fgB::red << "dirty" << rang::fg::reset; } std::cout << ")\n"; std::cout << "-------------------------------------------------------\n"; Kokkos::initialize(argc, argv); Kokkos::DefaultExecutionSpace::print_configuration(std::cout); std::map<std::string, double> method_cost_map; // { // Basic function based acoustic solver // Kokkos::Timer timer; // timer.reset(); // RawKokkos::AcousticSolver(number); // method_cost_map["RawKokkos"] = timer.seconds(); // } // { // class for acoustic solver (mesh less) // Kokkos::Timer timer; // timer.reset(); // MeshLessAcousticSolver acoustic_solver(number); // method_cost_map["MeshLessAcousticSolver"] = timer.seconds(); // } // { // class for acoustic solver // Kokkos::Timer timer; // timer.reset(); // AcousticSolver acoustic_solver(number); // method_cost_map["AcousticSolver"] = timer.seconds(); // } { // class for acoustic solver test Kokkos::Timer timer; timer.reset(); AcousticSolverTest acoustic_solver(number); method_cost_map["AcousticSolverTest"] = timer.seconds(); } { // class for acoustic solver test Kokkos::Timer timer; timer.reset(); Connectivity1D connectivity(number); typedef Mesh<Connectivity1D> MeshType; typedef MeshData<MeshType> MeshDataType; typedef FiniteVolumesEulerUnknowns<MeshDataType> UnknownsType; MeshType mesh(connectivity); MeshDataType mesh_data(mesh); UnknownsType unknowns(mesh_data); unknowns.initializeSod(); AcousticSolverWithMesh<MeshDataType> acoustic_solver(mesh_data, unknowns); method_cost_map["AcousticSolverWithMesh"] = timer.seconds(); { const Kokkos::View<const Rd*> xj = mesh_data.xj(); const Kokkos::View<const double*> rhoj = unknowns.rhoj(); std::ofstream fout("rho"); for (int j=0; j<mesh.numberOfCells(); ++j) { fout << xj[j][0] << ' ' << rhoj[j] << '\n'; } } } Kokkos::View<TinyVector<2,double>*[2]> test("test", 10); constexpr size_t N = 3; std::cout << "sizeof(TinyVector<" << N << ",double>)=" << sizeof(TinyVector<N,double>) << std::endl; std::cout << "sizeof(double)=" << sizeof(double) << std::endl; std::cout << "sizeof(size_t) = " << sizeof(size_t) << std::endl; std::cout << "sizeof(int) = " << sizeof(int) << std::endl; std::cout << "sizeof(unsigned int) = " << sizeof(unsigned int) << std::endl; std::cout << "sizeof(unsigned short) = " << sizeof(unsigned short) << std::endl; std::cout << "std::numeric_limits<size_t>::max() = " << std::numeric_limits<size_t>::max() << std::endl; std::cout << "std::numeric_limits<int>::max() = " << std::numeric_limits<int>::max() << std::endl; std::cout << "std::numeric_limits<unsigned int>::max() = " << std::numeric_limits<unsigned int>::max() << std::endl; std::cout << "std::numeric_limits<short>::max() = " << std::numeric_limits<short>::max() << std::endl; std::cout << "std::numeric_limits<unsigned short>::max() = " << std::numeric_limits<unsigned short>::max() << std::endl; std::cout << "std::numeric_limits<char>::max() = " << unsigned(std::numeric_limits<char>::max()) << std::endl; std::cout << "std::numeric_limits<unsigned char>::max() = " << unsigned(std::numeric_limits<unsigned char>::max()) << std::endl; Kokkos::finalize(); std::cout << "----------------------\n"; std::string::size_type size=0; for (const auto& method_cost : method_cost_map) { size = std::max(size, method_cost.first.size()); } for (const auto& method_cost : method_cost_map) { std::cout << "* [" << std::setw(size) << std::left << method_cost.first << " ] Execution time: " << rang::style::bold << method_cost.second << rang::style::reset << '\n'; } TinyVector<2> x=zero; TinyVector<2> y{1,2}; TinyVector<6> kk{1,2,3,4,5,6}; x=TinyVector<2>{3,2}; std::cout << x << "-" << y << "=" << x-y << std::endl; std::cout << x << "+" << y << "=" << x+y << std::endl; std::cout << "3*" << x << '=' << 3*x << std::endl; x[1]=3; y[1]=0.1; std::cout << "< " << x << " | " << y << " > = " << (x,y) << std::endl; TinyMatrix<2> Z = zero; TinyMatrix<2> A(1,2, 3,4); TinyMatrix<2> B = identity; B(1,1)=2; std::cout << "A=" << A << '\n'; std::cout << "B=" << B << '\n'; std::cout << "2A=" << 2*A << '\n'; std::cout << "A+B=" << A+B << '\n'; std::cout << "A-B=" << A-B << '\n'; std::cout << "AB=" << A*B << '\n'; std::cout << "Ax=" << A*x << '\n'; std::cout << "x tens y" << tensorProduct(x,y) << '\n'; return 0; }