diff --git a/src/language/utils/IntegrateCellValue.hpp b/src/language/utils/IntegrateCellValue.hpp index c4eafc151712219101a42d28ba2e8eb774ab0060..cd8bacc072bef0f5c68b1702fa9fef33c6d94f7d 100644 --- a/src/language/utils/IntegrateCellValue.hpp +++ b/src/language/utils/IntegrateCellValue.hpp @@ -34,7 +34,7 @@ class IntegrateCellValue<OutputType(InputType)> const Array<const CellId>& list_of_cells) { return IntegrateOnCells<OutputType(const InputType)>::integrate(function_symbol_id, quadrature_descriptor, mesh, - list_of_cells); + Array<const CellId>{list_of_cells}); } template <typename MeshType> @@ -44,8 +44,7 @@ class IntegrateCellValue<OutputType(InputType)> const MeshType& mesh, const Array<CellId>& list_of_cells) { - return IntegrateOnCells<OutputType(const InputType)>::integrate(function_symbol_id, quadrature_descriptor, mesh, - Array<const CellId>{list_of_cells}); + return integrate(function_symbol_id, quadrature_descriptor, mesh, Array<const CellId>{list_of_cells}); } }; diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index cf294f9ecb8ea51c6c6ec140915d0fb6107fc197..2e8f36589f0f340dc9ca682d64ae1a52df760e33 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -98,6 +98,7 @@ add_executable (unit_tests test_GaussQuadratureDescriptor.cpp test_IfProcessor.cpp test_IncDecExpressionProcessor.cpp + test_IntegrateCellValue.cpp test_IntegrateOnCells.cpp test_INodeProcessor.cpp test_ItemId.cpp diff --git a/tests/test_IntegrateCellValue.cpp b/tests/test_IntegrateCellValue.cpp new file mode 100644 index 0000000000000000000000000000000000000000..df35a215bea28b236cd2bcd7b243e2f759c4f40b --- /dev/null +++ b/tests/test_IntegrateCellValue.cpp @@ -0,0 +1,451 @@ +#include <catch2/catch_approx.hpp> +#include <catch2/catch_test_macros.hpp> +#include <catch2/matchers/catch_matchers_all.hpp> + +#include <language/ast/ASTBuilder.hpp> +#include <language/ast/ASTModulesImporter.hpp> +#include <language/ast/ASTNodeDataTypeBuilder.hpp> +#include <language/ast/ASTNodeExpressionBuilder.hpp> +#include <language/ast/ASTNodeFunctionEvaluationExpressionBuilder.hpp> +#include <language/ast/ASTNodeFunctionExpressionBuilder.hpp> +#include <language/ast/ASTNodeTypeCleaner.hpp> +#include <language/ast/ASTSymbolTableBuilder.hpp> +#include <language/utils/PugsFunctionAdapter.hpp> +#include <language/utils/SymbolTable.hpp> + +#include <MeshDataBaseForTests.hpp> +#include <mesh/Connectivity.hpp> +#include <mesh/DualMeshManager.hpp> +#include <mesh/Mesh.hpp> +#include <scheme/CellIntegrator.hpp> + +#include <analysis/GaussLegendreQuadratureDescriptor.hpp> +#include <analysis/GaussLobattoQuadratureDescriptor.hpp> +#include <analysis/GaussQuadratureDescriptor.hpp> + +#include <language/utils/IntegrateCellValue.hpp> + +// clazy:excludeall=non-pod-global-static + +TEST_CASE("IntegrateCellValue", "[language]") +{ + SECTION("integrate on all cells") + { + auto same_item_integral = [](auto f, auto g) -> bool { + using ItemIdType = typename decltype(f)::index_type; + for (ItemIdType item_id = 0; item_id < f.numberOfItems(); ++item_id) { + if (f[item_id] != g[item_id]) { + return false; + } + } + + return true; + }; + + SECTION("1D") + { + constexpr size_t Dimension = 1; + auto quadrature_descriptor = GaussQuadratureDescriptor(3); + + std::array mesh_list = MeshDataBaseForTests::get().all1DMeshes(); + + for (auto named_mesh : mesh_list) { + SECTION(named_mesh.name()) + { + auto mesh_1d = named_mesh.mesh(); + + std::string_view data = R"( +import math; +let R2x2_1d: R^1 -> R^2x2, x -> (2 * exp(x[0]) * sin(x[0]) + 3, sin(x[0] - 2 * x[0]), 3, x[0] * x[0]); +)"; + TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"}; + + auto ast = ASTBuilder::build(input); + + ASTModulesImporter{*ast}; + ASTNodeTypeCleaner<language::import_instruction>{*ast}; + + ASTSymbolTableBuilder{*ast}; + ASTNodeDataTypeBuilder{*ast}; + + ASTNodeTypeCleaner<language::var_declaration>{*ast}; + ASTNodeTypeCleaner<language::fct_declaration>{*ast}; + ASTNodeExpressionBuilder{*ast}; + + std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table; + + TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"}; + position.byte = data.size(); // ensure that variables are declared at this point + + using R2x2 = TinyMatrix<2>; + auto [i_symbol, found] = symbol_table->find("R2x2_1d", position); + REQUIRE(found); + REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t); + + FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table); + + CellValue<R2x2> cell_integral{mesh_1d->connectivity()}; + auto f = [](const TinyVector<Dimension>& x) -> R2x2 { + return R2x2{2 * exp(x[0]) * sin(x[0]) + 3, sin(x[0] - 2 * x[0]), 3, x[0] * x[0]}; + }; + CellIntegrator::integrateTo(f, quadrature_descriptor, *mesh_1d, cell_integral); + + CellValue<R2x2> integrate_value = + IntegrateCellValue<R2x2(TinyVector<Dimension>)>::integrate(function_symbol_id, quadrature_descriptor, + *mesh_1d); + + REQUIRE(same_item_integral(cell_integral, integrate_value)); + } + } + } + + SECTION("2D") + { + constexpr size_t Dimension = 2; + auto quadrature_descriptor = GaussLobattoQuadratureDescriptor(3); + + std::array mesh_list = MeshDataBaseForTests::get().all2DMeshes(); + + for (auto named_mesh : mesh_list) { + SECTION(named_mesh.name()) + { + auto mesh_2d = named_mesh.mesh(); + + std::string_view data = R"( +import math; +let R3_2d: R^2 -> R^3, x -> (2*exp(x[0])*sin(x[1])+3, x[0]-2*x[1], 3); +)"; + + TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"}; + + auto ast = ASTBuilder::build(input); + + ASTModulesImporter{*ast}; + ASTNodeTypeCleaner<language::import_instruction>{*ast}; + + ASTSymbolTableBuilder{*ast}; + ASTNodeDataTypeBuilder{*ast}; + + ASTNodeTypeCleaner<language::var_declaration>{*ast}; + ASTNodeTypeCleaner<language::fct_declaration>{*ast}; + ASTNodeExpressionBuilder{*ast}; + + std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table; + + TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"}; + position.byte = data.size(); // ensure that variables are declared at this point + + using R3 = TinyVector<3>; + auto [i_symbol, found] = symbol_table->find("R3_2d", position); + REQUIRE(found); + REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t); + + FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table); + + CellValue<R3> cell_integral{mesh_2d->connectivity()}; + auto f = [](const TinyVector<Dimension>& x) -> R3 { + return R3{2 * exp(x[0]) * sin(x[1]) + 3, x[0] - 2 * x[1], 3}; + }; + CellIntegrator::integrateTo(f, quadrature_descriptor, *mesh_2d, cell_integral); + + CellValue<R3> integrate_value = + IntegrateCellValue<R3(TinyVector<Dimension>)>::integrate(function_symbol_id, quadrature_descriptor, + *mesh_2d); + + REQUIRE(same_item_integral(cell_integral, integrate_value)); + } + } + } + + SECTION("3D") + { + constexpr size_t Dimension = 3; + auto quadrature_descriptor = GaussLegendreQuadratureDescriptor(3); + + using NamedMesh = MeshDataBaseForTests::NamedMesh<Dimension>; + + std::vector<NamedMesh> mesh_list = [] { + std::vector<NamedMesh> extended_mesh_list; + std::array mesh_array = MeshDataBaseForTests::get().all3DMeshes(); + for (size_t i = 0; i < mesh_array.size(); ++i) { + extended_mesh_list.push_back(MeshDataBaseForTests::get().all3DMeshes()[i]); + } + extended_mesh_list.push_back(NamedMesh("diamond dual", DualMeshManager::instance().getDiamondDualMesh( + *MeshDataBaseForTests::get().hybrid3DMesh()))); + return extended_mesh_list; + }(); + + for (auto named_mesh : mesh_list) { + SECTION(named_mesh.name()) + { + auto mesh_3d = named_mesh.mesh(); + + std::string_view data = R"( +import math; +let scalar_3d: R^3 -> R, x -> 2 * exp(x[0]) * sin(x[1]) * x[2] + 3; +)"; + + TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"}; + + auto ast = ASTBuilder::build(input); + + ASTModulesImporter{*ast}; + ASTNodeTypeCleaner<language::import_instruction>{*ast}; + + ASTSymbolTableBuilder{*ast}; + ASTNodeDataTypeBuilder{*ast}; + + ASTNodeTypeCleaner<language::var_declaration>{*ast}; + ASTNodeTypeCleaner<language::fct_declaration>{*ast}; + ASTNodeExpressionBuilder{*ast}; + + std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table; + + TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"}; + position.byte = data.size(); // ensure that variables are declared at this point + + auto [i_symbol, found] = symbol_table->find("scalar_3d", position); + REQUIRE(found); + REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t); + + FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table); + + CellValue<double> cell_integral{mesh_3d->connectivity()}; + auto f = [](const TinyVector<Dimension>& x) -> double { return 2 * exp(x[0]) * sin(x[1]) * x[2] + 3; }; + CellIntegrator::integrateTo(f, quadrature_descriptor, *mesh_3d, cell_integral); + + CellValue<double> integrate_value = + IntegrateCellValue<double(TinyVector<Dimension>)>::integrate(function_symbol_id, quadrature_descriptor, + *mesh_3d); + + REQUIRE(same_item_integral(cell_integral, integrate_value)); + } + } + } + } + + SECTION("integrate on cell list") + { + auto same_item_integral = [](auto f, auto g) -> bool { + using ItemIdType = typename decltype(g)::index_type; + for (ItemIdType item_id = 0; item_id < f.size(); ++item_id) { + if (f[item_id] != g[item_id]) { + return false; + } + } + + return true; + }; + + SECTION("1D") + { + constexpr size_t Dimension = 1; + auto quadrature_descriptor = GaussLegendreQuadratureDescriptor(3); + + std::array mesh_list = MeshDataBaseForTests::get().all1DMeshes(); + + for (auto named_mesh : mesh_list) { + SECTION(named_mesh.name()) + { + auto mesh_1d = named_mesh.mesh(); + Array<CellId> cell_list{mesh_1d->numberOfCells() / 2 + mesh_1d->numberOfCells() % 2}; + + { + size_t k = 0; + for (CellId cell_id = 0; cell_id < mesh_1d->numberOfCells(); ++(++cell_id), ++k) { + cell_list[k] = cell_id; + } + + REQUIRE(k == cell_list.size()); + } + + std::string_view data = R"( +import math; +let scalar_1d: R^1 -> R, x -> 2 * exp(x[0]) + 3; +)"; + TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"}; + + auto ast = ASTBuilder::build(input); + + ASTModulesImporter{*ast}; + ASTNodeTypeCleaner<language::import_instruction>{*ast}; + + ASTSymbolTableBuilder{*ast}; + ASTNodeDataTypeBuilder{*ast}; + + ASTNodeTypeCleaner<language::var_declaration>{*ast}; + ASTNodeTypeCleaner<language::fct_declaration>{*ast}; + ASTNodeExpressionBuilder{*ast}; + + std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table; + + TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"}; + position.byte = data.size(); // ensure that variables are declared at this point + + auto [i_symbol, found] = symbol_table->find("scalar_1d", position); + REQUIRE(found); + REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t); + + FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table); + + auto f = [](const TinyVector<Dimension>& x) -> double { return 2 * std::exp(x[0]) + 3; }; + + Array<const double> cell_integral = CellIntegrator::integrate(f, quadrature_descriptor, *mesh_1d, cell_list); + Array<const double> integrate_value = + IntegrateCellValue<double(TinyVector<Dimension>)>::integrate(function_symbol_id, quadrature_descriptor, + *mesh_1d, cell_list); + + REQUIRE(same_item_integral(cell_integral, integrate_value)); + } + } + } + + SECTION("2D") + { + constexpr size_t Dimension = 2; + auto quadrature_descriptor = GaussLegendreQuadratureDescriptor(3); + + std::array mesh_list = MeshDataBaseForTests::get().all2DMeshes(); + + for (auto named_mesh : mesh_list) { + SECTION(named_mesh.name()) + { + auto mesh_2d = named_mesh.mesh(); + + Array<CellId> cell_list{mesh_2d->numberOfCells() / 2 + mesh_2d->numberOfCells() % 2}; + + { + size_t k = 0; + for (CellId cell_id = 0; cell_id < mesh_2d->numberOfCells(); ++(++cell_id), ++k) { + cell_list[k] = cell_id; + } + + REQUIRE(k == cell_list.size()); + } + + std::string_view data = R"( +import math; +let R3_2d: R^2 -> R^3, x -> (2*exp(x[0])*sin(x[1])+3, x[0]-2*x[1], 3); +)"; + + TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"}; + + auto ast = ASTBuilder::build(input); + + ASTModulesImporter{*ast}; + ASTNodeTypeCleaner<language::import_instruction>{*ast}; + + ASTSymbolTableBuilder{*ast}; + ASTNodeDataTypeBuilder{*ast}; + + ASTNodeTypeCleaner<language::var_declaration>{*ast}; + ASTNodeTypeCleaner<language::fct_declaration>{*ast}; + ASTNodeExpressionBuilder{*ast}; + + std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table; + + TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"}; + position.byte = data.size(); // ensure that variables are declared at this point + + using R3 = TinyVector<3>; + auto [i_symbol, found] = symbol_table->find("R3_2d", position); + REQUIRE(found); + REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t); + + FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table); + + auto f = [](const TinyVector<Dimension>& x) -> R3 { + return R3{2 * exp(x[0]) * sin(x[1]) + 3, x[0] - 2 * x[1], 3}; + }; + + Array<const R3> cell_integral = CellIntegrator::integrate(f, quadrature_descriptor, *mesh_2d, cell_list); + Array<const R3> integrate_value = + IntegrateCellValue<R3(TinyVector<Dimension>)>::integrate(function_symbol_id, quadrature_descriptor, + *mesh_2d, cell_list); + + REQUIRE(same_item_integral(cell_integral, integrate_value)); + } + } + } + + SECTION("3D") + { + constexpr size_t Dimension = 3; + auto quadrature_descriptor = GaussQuadratureDescriptor(3); + + using NamedMesh = MeshDataBaseForTests::NamedMesh<Dimension>; + + std::vector<NamedMesh> mesh_list = [] { + std::vector<NamedMesh> extended_mesh_list; + std::array mesh_array = MeshDataBaseForTests::get().all3DMeshes(); + for (size_t i = 0; i < mesh_array.size(); ++i) { + extended_mesh_list.push_back(MeshDataBaseForTests::get().all3DMeshes()[i]); + } + extended_mesh_list.push_back(NamedMesh("diamond dual", DualMeshManager::instance().getDiamondDualMesh( + *MeshDataBaseForTests::get().hybrid3DMesh()))); + return extended_mesh_list; + }(); + + for (auto named_mesh : mesh_list) { + SECTION(named_mesh.name()) + { + auto mesh_3d = named_mesh.mesh(); + + Array<CellId> cell_list{mesh_3d->numberOfCells() / 2 + mesh_3d->numberOfCells() % 2}; + + { + size_t k = 0; + for (CellId cell_id = 0; cell_id < mesh_3d->numberOfCells(); ++(++cell_id), ++k) { + cell_list[k] = cell_id; + } + + REQUIRE(k == cell_list.size()); + } + + std::string_view data = R"( +import math; +let R2x2_3d: R^3 -> R^2x2, x -> (2 * exp(x[0]) * sin(x[1]) + 3 * cos(x[2]), sin(x[0] - 2 * x[1] * x[2]), 3, x[0] * x[1] * x[2]); +)"; + + TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"}; + + auto ast = ASTBuilder::build(input); + + ASTModulesImporter{*ast}; + ASTNodeTypeCleaner<language::import_instruction>{*ast}; + + ASTSymbolTableBuilder{*ast}; + ASTNodeDataTypeBuilder{*ast}; + + ASTNodeTypeCleaner<language::var_declaration>{*ast}; + ASTNodeTypeCleaner<language::fct_declaration>{*ast}; + ASTNodeExpressionBuilder{*ast}; + + std::shared_ptr<SymbolTable> symbol_table = ast->m_symbol_table; + + TAO_PEGTL_NAMESPACE::position position{TAO_PEGTL_NAMESPACE::internal::iterator{"fixture"}, "fixture"}; + position.byte = data.size(); // ensure that variables are declared at this point + + using R2x2 = TinyMatrix<2>; + auto [i_symbol, found] = symbol_table->find("R2x2_3d", position); + REQUIRE(found); + REQUIRE(i_symbol->attributes().dataType() == ASTNodeDataType::function_t); + + FunctionSymbolId function_symbol_id(std::get<uint64_t>(i_symbol->attributes().value()), symbol_table); + + auto f = [](const TinyVector<Dimension>& x) -> R2x2 { + return R2x2{2 * exp(x[0]) * sin(x[1]) + 3 * cos(x[2]), sin(x[0] - 2 * x[1] * x[2]), 3, x[0] * x[1] * x[2]}; + }; + + Array<const R2x2> cell_integral = CellIntegrator::integrate(f, quadrature_descriptor, *mesh_3d, cell_list); + + Array<R2x2> integrate_value = + IntegrateCellValue<R2x2(TinyVector<Dimension>)>::integrate(function_symbol_id, quadrature_descriptor, + *mesh_3d, cell_list); + + REQUIRE(same_item_integral(cell_integral, integrate_value)); + } + } + } + } +} diff --git a/tests/test_IntegrateCellValue.hpp b/tests/test_IntegrateCellValue.hpp new file mode 100644 index 0000000000000000000000000000000000000000..f9a9e32a9a0bb69e61626eab69334c3248ee2b74 --- /dev/null +++ b/tests/test_IntegrateCellValue.hpp @@ -0,0 +1 @@ +i_f_symboli_f_symboli_f_symbol diff --git a/tests/test_InterpolateItemArray.cpp b/tests/test_InterpolateItemArray.cpp index 2974e01d8732d35702b32493f0cb810932de2df2..7fd968be9aaeed6cd7774353df69b2153eb68d51 100644 --- a/tests/test_InterpolateItemArray.cpp +++ b/tests/test_InterpolateItemArray.cpp @@ -297,10 +297,10 @@ let scalar_non_linear_3d: R^3 -> R, x -> 2 * exp(x[0]) * sin(x[1]) * x[2] + 3; }(); std::string_view data = R"( - import math; - let scalar_affine_1d: R^1 -> R, x -> 2*x[0] + 2; - let scalar_non_linear_1d: R^1 -> R, x -> 2 * exp(x[0]) + 3; - )"; +import math; +let scalar_affine_1d: R^1 -> R, x -> 2*x[0] + 2; +let scalar_non_linear_1d: R^1 -> R, x -> 2 * exp(x[0]) + 3; +)"; TAO_PEGTL_NAMESPACE::string_input input{data, "test.pgs"}; auto ast = ASTBuilder::build(input);