diff --git a/src/scheme/CMakeLists.txt b/src/scheme/CMakeLists.txt
index 884906ec32822567ce353bc17b6354f014470b74..09828c0ff734f1e514c14f64b103c5979fc4a509 100644
--- a/src/scheme/CMakeLists.txt
+++ b/src/scheme/CMakeLists.txt
@@ -24,6 +24,7 @@ add_library(
   RusanovEulerianCompositeSolverTools.cpp
   RusanovEulerianCompositeSolver.cpp
   RusanovEulerianCompositeSolver_v2.cpp
+  RoeViscousFormEulerianCompositeSolver_v2.cpp
 )
 
 target_link_libraries(
diff --git a/src/scheme/RoeViscousFormEulerianCompositeSolver_v2.cpp b/src/scheme/RoeViscousFormEulerianCompositeSolver_v2.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..646088154db01b557a029724d73315239240f7be
--- /dev/null
+++ b/src/scheme/RoeViscousFormEulerianCompositeSolver_v2.cpp
@@ -0,0 +1,2155 @@
+#include <scheme/RoeViscousFormEulerianCompositeSolver_v2.hpp>
+
+#include <language/utils/InterpolateItemArray.hpp>
+#include <mesh/Mesh.hpp>
+#include <mesh/MeshData.hpp>
+#include <mesh/MeshDataManager.hpp>
+#include <mesh/MeshEdgeBoundary.hpp>
+#include <mesh/MeshFaceBoundary.hpp>
+#include <mesh/MeshFlatEdgeBoundary.hpp>
+#include <mesh/MeshFlatFaceBoundary.hpp>
+#include <mesh/MeshFlatNodeBoundary.hpp>
+#include <mesh/MeshNodeBoundary.hpp>
+#include <mesh/MeshTraits.hpp>
+#include <mesh/MeshVariant.hpp>
+#include <scheme/DiscreteFunctionUtils.hpp>
+#include <scheme/InflowListBoundaryConditionDescriptor.hpp>
+
+#include <variant>
+
+template <MeshConcept MeshTypeT>
+class RoeViscousFormEulerianCompositeSolver_v2
+{
+ private:
+  using MeshType = MeshTypeT;
+
+  static constexpr size_t Dimension = MeshType::Dimension;
+
+  using Rdxd = TinyMatrix<Dimension>;
+  using Rd   = TinyVector<Dimension>;
+
+  using Rpxp = TinyMatrix<Dimension + 2>;
+  using Rp   = TinyVector<Dimension + 2>;
+
+  using Rpxd = TinyMatrix<Dimension + 2, Dimension>;
+
+  class SymmetryBoundaryCondition;
+  class InflowListBoundaryCondition;
+  class OutflowBoundaryCondition;
+  class NeumannBoundaryCondition;
+  class NeumannflatBoundaryCondition;
+
+  using BoundaryCondition = std::variant<SymmetryBoundaryCondition,
+                                         InflowListBoundaryCondition,
+                                         OutflowBoundaryCondition,
+                                         NeumannflatBoundaryCondition,
+                                         NeumannBoundaryCondition>;
+
+  using BoundaryConditionList = std::vector<BoundaryCondition>;
+
+  BoundaryConditionList
+  _getBCList(const MeshType& mesh,
+             const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list) const
+  {
+    BoundaryConditionList bc_list;
+
+    for (const auto& bc_descriptor : bc_descriptor_list) {
+      bool is_valid_boundary_condition = true;
+
+      switch (bc_descriptor->type()) {
+      case IBoundaryConditionDescriptor::Type::neumann: {
+        if constexpr (Dimension == 2) {
+          bc_list.emplace_back(
+            NeumannBoundaryCondition(getMeshFlatNodeBoundary(mesh, bc_descriptor->boundaryDescriptor()),
+                                     getMeshFlatFaceBoundary(mesh, bc_descriptor->boundaryDescriptor())));
+        } else {
+          static_assert(Dimension == 3);
+          bc_list.emplace_back(
+            NeumannBoundaryCondition(getMeshFlatNodeBoundary(mesh, bc_descriptor->boundaryDescriptor()),
+                                     getMeshFlatEdgeBoundary(mesh, bc_descriptor->boundaryDescriptor()),
+                                     getMeshFlatFaceBoundary(mesh, bc_descriptor->boundaryDescriptor())));
+        }
+        break;
+      }
+      case IBoundaryConditionDescriptor::Type::symmetry: {
+        if constexpr (Dimension == 2) {
+          bc_list.emplace_back(
+            SymmetryBoundaryCondition(getMeshFlatNodeBoundary(mesh, bc_descriptor->boundaryDescriptor()),
+                                      getMeshFlatFaceBoundary(mesh, bc_descriptor->boundaryDescriptor())));
+        } else {
+          static_assert(Dimension == 3);
+          bc_list.emplace_back(
+            SymmetryBoundaryCondition(getMeshFlatNodeBoundary(mesh, bc_descriptor->boundaryDescriptor()),
+                                      getMeshFlatEdgeBoundary(mesh, bc_descriptor->boundaryDescriptor()),
+                                      getMeshFlatFaceBoundary(mesh, bc_descriptor->boundaryDescriptor())));
+        }
+        break;
+      }
+      case IBoundaryConditionDescriptor::Type::inflow_list: {
+        const InflowListBoundaryConditionDescriptor& inflow_list_bc_descriptor =
+          dynamic_cast<const InflowListBoundaryConditionDescriptor&>(*bc_descriptor);
+        if (inflow_list_bc_descriptor.functionSymbolIdList().size() != 2 + Dimension) {
+          std::ostringstream error_msg;
+          error_msg << "invalid number of functions for inflow boundary "
+                    << inflow_list_bc_descriptor.boundaryDescriptor() << ", found "
+                    << inflow_list_bc_descriptor.functionSymbolIdList().size() << ", expecting " << 2 + Dimension;
+          throw NormalError(error_msg.str());
+        }
+
+        if constexpr (Dimension == 2) {
+          auto node_boundary = getMeshNodeBoundary(mesh, bc_descriptor->boundaryDescriptor());
+          Table<const double> node_values =
+            InterpolateItemArray<double(Rd)>::template interpolate<ItemType::node>(inflow_list_bc_descriptor
+                                                                                     .functionSymbolIdList(),
+                                                                                   mesh.xr(), node_boundary.nodeList());
+
+          auto xl = MeshDataManager::instance().getMeshData(mesh).xl();
+
+          auto face_boundary = getMeshFaceBoundary(mesh, bc_descriptor->boundaryDescriptor());
+          Table<const double> face_values =
+            InterpolateItemArray<double(Rd)>::template interpolate<ItemType::face>(inflow_list_bc_descriptor
+                                                                                     .functionSymbolIdList(),
+                                                                                   xl, face_boundary.faceList());
+
+          bc_list.emplace_back(InflowListBoundaryCondition(node_boundary, face_boundary, node_values, face_values));
+        } else {
+          static_assert(Dimension == 3);
+          auto node_boundary = getMeshNodeBoundary(mesh, bc_descriptor->boundaryDescriptor());
+          Table<const double> node_values =
+            InterpolateItemArray<double(Rd)>::template interpolate<ItemType::node>(inflow_list_bc_descriptor
+                                                                                     .functionSymbolIdList(),
+                                                                                   mesh.xr(), node_boundary.nodeList());
+
+          auto xe = MeshDataManager::instance().getMeshData(mesh).xe();
+
+          auto edge_boundary = getMeshEdgeBoundary(mesh, bc_descriptor->boundaryDescriptor());
+          Table<const double> edge_values =
+            InterpolateItemArray<double(Rd)>::template interpolate<ItemType::edge>(inflow_list_bc_descriptor
+                                                                                     .functionSymbolIdList(),
+                                                                                   xe, edge_boundary.edgeList());
+
+          auto xl = MeshDataManager::instance().getMeshData(mesh).xl();
+
+          auto face_boundary = getMeshFaceBoundary(mesh, bc_descriptor->boundaryDescriptor());
+          Table<const double> face_values =
+            InterpolateItemArray<double(Rd)>::template interpolate<ItemType::face>(inflow_list_bc_descriptor
+                                                                                     .functionSymbolIdList(),
+                                                                                   xl, face_boundary.faceList());
+
+          bc_list.emplace_back(InflowListBoundaryCondition(node_boundary, edge_boundary, face_boundary, node_values,
+                                                           edge_values, face_values));
+        }
+        break;
+      }
+      case IBoundaryConditionDescriptor::Type::outflow: {
+        if constexpr (Dimension == 2) {
+          bc_list.emplace_back(
+            OutflowBoundaryCondition(getMeshNodeBoundary(mesh, bc_descriptor->boundaryDescriptor()),
+                                     getMeshFaceBoundary(mesh, bc_descriptor->boundaryDescriptor())));
+        } else {
+          static_assert(Dimension == 3);
+          bc_list.emplace_back(
+            OutflowBoundaryCondition(getMeshNodeBoundary(mesh, bc_descriptor->boundaryDescriptor()),
+                                     getMeshEdgeBoundary(mesh, bc_descriptor->boundaryDescriptor()),
+                                     getMeshFaceBoundary(mesh, bc_descriptor->boundaryDescriptor())));
+        }
+        break;
+        // std::cout << "outflow not implemented yet\n";
+        // break;
+      }
+      default: {
+        is_valid_boundary_condition = false;
+      }
+      }
+      if (not is_valid_boundary_condition) {
+        std::ostringstream error_msg;
+        error_msg << *bc_descriptor << " is an invalid boundary condition for Rusanov v2 Eulerian Composite solver";
+        throw NormalError(error_msg.str());
+      }
+    }
+
+    return bc_list;
+  }
+
+ public:
+  void _applyNeumannBoundaryCondition(const BoundaryConditionList& bc_list,
+                                      const MeshType& mesh,
+                                      NodeValuePerCell<Rp>& stateNode,
+                                      EdgeValuePerCell<Rp>& stateEdge,
+                                      FaceValuePerCell<Rp>& stateFace) const;
+
+  void _applyNeumannflatBoundaryCondition(const BoundaryConditionList& bc_list,
+                                          const MeshType& mesh,
+                                          NodeValuePerCell<Rp>& stateNode,
+                                          EdgeValuePerCell<Rp>& stateEdge,
+                                          FaceValuePerCell<Rp>& stateFace) const;
+
+  void _applyInflowBoundaryCondition(const BoundaryConditionList& bc_list,
+                                     const MeshType& mesh,
+                                     NodeValuePerCell<Rp>& stateNode,
+                                     EdgeValuePerCell<Rp>& stateEdge,
+                                     FaceValuePerCell<Rp>& stateFace) const;
+
+  void _applyOutflowBoundaryCondition(const BoundaryConditionList& bc_list,
+                                      const MeshType& mesh,
+                                      NodeValuePerCell<Rp>& stateNode,
+                                      EdgeValuePerCell<Rp>& stateEdge,
+                                      FaceValuePerCell<Rp>& stateFace) const;
+
+  void _applySymmetricBoundaryCondition(const BoundaryConditionList& bc_list,
+                                        const MeshType& mesh,
+                                        NodeValuePerCell<Rp>& stateNode,
+                                        EdgeValuePerCell<Rp>& stateEdge,
+                                        FaceValuePerCell<Rp>& stateFace) const;
+
+ public:
+  double
+  EvaluateMaxEigenValueInGivenUnitDirection(const double& rho_mean,
+                                            const Rd& U_mean,
+                                            const double& E_mean,
+                                            const double& c_mean,
+                                            const Rd& normal) const
+  {
+    const double norme_normal = l2norm(normal);
+    Rd unit_normal            = normal;
+    unit_normal *= 1. / norme_normal;
+    const double uscaln = dot(U_mean, unit_normal);
+
+    return std::max(std::fabs(uscaln - c_mean), std::fabs(uscaln + c_mean));
+  }
+
+  inline double
+  pression(const double rho, const double epsilon, const double gam) const
+  {
+    return (gam - 1) * rho * epsilon;
+  }
+
+  inline Rpxd
+  Flux(const double& rho, const Rd& U, const double& E, const double gam) const
+  {
+    // const R2 flux_rho   = rhoU;
+    // const R22 flux_rhoU = R22(rhoU.x1() * rhoU.x1() / rho + P, rhoU.x1() * rhoU.x2() / rho, rhoU.x2() * rhoU.x1()
+    // rho,rhoU.x2() * rhoU.x2() / rho + P);
+    // const R2 flux_rhoE  = ((rhoE + P) / rho) * rhoU;
+    /*  CellValue<Rdxd> rhoUtensU{p_mesh->connectivity()};
+    CellValue<Rdxd> Pid(p_mesh->connectivity());
+    Pid.fill(identity);
+    CellValue<Rdxd> rhoUtensUPlusPid{p_mesh->connectivity()};
+    rhoUtensUPlusPid.fill(zero);
+
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+        rhoUtensU[j] = tensorProduct(rhoU[j], u[j]);
+        Pid[j] *= p_n[j];
+        rhoUtensUPlusPid[j] = rhoUtensU[j] + Pid[j];
+      });
+      auto Flux_rho    = rhoU;
+    auto Flux_qtmvt  = rhoUtensUPlusPid;   // rhoUtensU + Pid;
+    auto Flux_totnrj = (rhoE + p_n) * u;
+
+    */
+    const Rd& rhoU       = rho * U;
+    const Rdxd rhoUTensU = tensorProduct(rhoU, U);
+    const double p       = pression(rho, E - .5 * dot(U, U), gam);
+
+    Rdxd pid(identity);
+    pid *= p;
+    const Rdxd rhoUTensUPlusPid = rhoUTensU + pid;
+    const double rhoEPlusP      = rho * E + p;
+
+    const Rd& rhoEPlusPtimesU = rhoEPlusP * U;
+
+    Rpxd Fluxx;   // En ligne ci dessous
+
+    Fluxx[0] = rhoU;
+    for (size_t dim = 0; dim < Dimension; ++dim)
+      // for (size_t dim2 = 0; dim2 < Dimension; ++dim2)
+      Fluxx[1 + dim] = rhoUTensUPlusPid[dim];
+    // Fluxx[1 + dim][dim2] = rhoUTensUPlusPid[dim][dim2];
+    Fluxx[1 + Dimension] = rhoEPlusPtimesU;
+    return Fluxx;
+  }
+
+  struct JacobianInformations
+  {
+    Rpxp Jacobian;
+    Rpxp LeftEigenVectors;
+    Rpxp RightEigenVectors;
+    Rp EigenValues;
+  };
+
+  struct RoeAverageStateStructData
+  {
+    double rho;
+    Rd U;
+    double E;
+    double H;
+    double gamma;
+    double p;
+    double c;
+  };
+  //    Rp RoeAverageState(const Rp& val1, const Rp& val2 )
+  // Rp RoeAverageState(const Rp& val1, const Rp& val2 )
+  // Rp
+  RoeAverageStateStructData
+  RoeAverageState(const double& rhoG,
+                  const Rd& UG,
+                  const double& EG,
+                  const double& gammaG,
+                  const double& pG,
+                  const double& rhoD,
+                  const Rd& UD,
+                  const double& ED,
+                  const double gammaD,
+                  const double pD)
+
+  {
+    double gamma              = .5 * (gammaG + gammaD);   // ou ponderation racine roG et roD
+    double RacineRoG          = sqrt(rhoG);
+    double RacineRoD          = sqrt(rhoD);
+    double rho_mean           = RacineRoG * RacineRoD;
+    Rd U_mean                 = (RacineRoG * UG + RacineRoD * UD) / (RacineRoG + RacineRoD);
+    double unorm2             = dot(U_mean, U_mean);
+    double NrjCin             = .5 * unorm2;
+    const double TotEnthalpyG = (EG + pG / rhoG);
+    const double TotEnthalpyD = (ED + pD / rhoD);
+
+    double H_mean = (RacineRoG * TotEnthalpyG + RacineRoD * TotEnthalpyD) / (RacineRoG + RacineRoD);
+
+    double E_mean = H_mean / gamma + ((gamma - 1) / (gamma)) * (NrjCin);
+
+    double P_mean = rho_mean * (H_mean - E_mean);
+
+    double c2 = gamma * P_mean / rho_mean;   // cspeed*cspeed;
+    // assert(fabs((gamma - 1) * rho_mean * (E_mean - .5 * (u_mean, u_mean)) - P_mean) < 1e-13);   // equilibre GP
+    double c_mean = sqrt(c2);   // cspeed_meandof/Area;
+
+    return RoeAverageStateStructData(rho_mean, U_mean, E_mean, H_mean, gamma, P_mean, c_mean);
+  }
+
+  JacobianInformations
+  JacobianFluxAlongUnitNormal(const RoeAverageStateStructData& RoeState, const Rd& normal)
+  {
+    /*  double rho;
+        Rd U;
+        double E;
+        double H;
+        double gamma;
+        double p;
+        double c;
+    */
+    assert((l2norm(normal) - 1) < 1e-12);
+
+    const double& rho    = RoeState.rho;
+    const Rd& u_mean     = RoeState.U;
+    const double H_mean  = RoeState.H;
+    const double& cspeed = RoeState.c;
+    const double& gamma  = RoeState.gamma;
+    const double& uscaln = dot(u_mean, normal);
+    const double& u2     = dot(u_mean, u_mean);
+    // const R NrjCin=.5*unorm2;
+
+    const double c2  = cspeed * cspeed;
+    const double gm1 = gamma - 1;
+    const double K   = c2 + gm1 * (dot(u_mean, u_mean) - H_mean);
+
+    Rpxp Jacobian;
+    Rdxd UdScaln(identity);
+    UdScaln *= uscaln;
+    Rdxd CentralF = tensorProduct(u_mean, normal) - gm1 * tensorProduct(normal, u_mean) + UdScaln;
+    Jacobian[0]   = Rp{0, normal, 0};
+    for (size_t dim = 0; dim < Dimension; ++dim)
+      Jacobian[1 + dim] = Rp{K * normal[dim] - uscaln * u_mean[dim], CentralF[dim], gm1 * normal[dim]};
+    Jacobian[1 + Dimension] = Rp{(K - H_mean) * uscaln, (H_mean * normal - gm1 * uscaln * u_mean), gamma * uscaln};
+
+    // Le jacobien est lineaire par rapport a la normale
+    /*
+      // R2
+    Jac(0, 0) = 0;
+    Jac(0, 1) = nx;
+    Jac(0, 2) = ny;
+    Jac(0, 3) = 0;
+    Jac(1, 0) = (gamma - 1) * NrjCin * nx - uscaln * u;
+    Jac(1, 1) = uscaln + (2 - gamma) * u * nx;
+    Jac(1, 2) = u * ny + (1 - gamma) * v * nx;
+    Jac(1, 3) = (gamma - 1) * nx;
+    Jac(2, 0) = (gamma - 1) * NrjCin * ny - uscaln * v;
+    Jac(2, 1) = v * nx + (1 - gamma) * u * ny;
+    Jac(2, 2) = uscaln + (2 - gamma) * v * ny;
+    Jac(2, 3) = (gamma - 1) * ny;
+    Jac(3, 0) = uscaln * ((gamma - 1) * NrjCin - H_meandof);
+    Jac(3, 1) = H_meandof * nx + (1 - gamma) * u * uscaln;
+    Jac(3, 2) = H_meandof * ny + (1 - gamma) * v * uscaln;
+    Jac(3, 3) = gamma * uscaln;
+
+    // R3
+    Jac(0, 0) = 0;
+    Jac(0, 1) = nx;
+    Jac(0, 2) = ny;
+    Jac(0, 3) = nz
+    Jac(0, 4) = 0;
+
+    Jac(1, 0) = (gamma - 1) * NrjCin * nx - uscaln * u;
+    Jac(1, 1) = uscaln + (2 - gamma) * u * nx;
+
+    Jac(1, 4) = (gamma - 1) * nx;
+
+    Jac(2, 0) = (gamma - 1) * NrjCin * ny - uscaln * v;
+
+    Jac(2, 2) = uscaln + (2 - gamma) * v * ny;
+
+    Jac(2, 4) = (gamma - 1) * ny;
+
+    Jac(3, 0) = (gamma - 1) * NrjCin * nz - uscaln * w;
+
+    Jac(3, 3) = uscaln + (2 - gamma) * w * nz;
+    Jac(3, 4) = (gamma - 1) * nz;
+
+    Jac(4, 0) = uscaln * ((gamma - 1) * NrjCin - H_meandof);
+    Jac(4, 1) = H_meandof * nx + (1 - gamma) * u * uscaln;
+    Jac(4, 2) = H_meandof * ny + (1 - gamma) * v * uscaln;
+    Jac(4, 3) = H_meandof * nz + (1 - gamma) * w * uscaln;
+    Jac(4, 4) = gamma * uscaln;
+
+    */
+
+    Rp EigenValues;
+    Rpxp Left;
+    Rpxp Right;
+
+    EigenValues[0] = uscaln - cspeed;
+    for (int dim = 0; dim < Dimension; ++dim)   // vp multidplicite d
+      EigenValues[1 + dim] = uscaln;
+
+    EigenValues[1 + Dimension] = uscaln + cspeed;
+    // Vecteur propres a droite et gauche
+    std::vector<Rd> ortho(Dimension - 1);
+    if constexpr (Dimension == 2) {
+      ortho[0] = {normal[1], -normal[0]};   // aussi de norme 1
+    } else {
+      const double a = normal[0];
+      const double b = normal[1];
+      const double c = normal[2];
+      if (a == b == c) {
+        static constexpr double invsqrt2 = 1. / sqrt(2.);
+        static constexpr double invsqrt6 = 1. / sqrt(6.);
+
+        ortho[0] = {invsqrt2, -invsqrt2, 0};
+        ortho[1] = {invsqrt6, invsqrt6, -2 * invsqrt6};
+
+      } else {
+        ortho[0] = {b - c, -(a - c), a - b};
+        ortho[0] *= 1. / l2Norm(ortho[0]);
+        ortho[1] = {a * (b + c) - b * b - c * c, b * (a + c) - a * a - c * c, c * (a + b) - a * a - b * b};
+        ortho[1] *= 1. / l2Norm(ortho[1]);
+      }
+    }
+
+    //
+    Rpxp RightT;
+    RightT[0] = {1, u_mean - cspeed * normal, H_mean - uscaln * cspeed};
+    RightT[1] = {1, u_mean, H_mean - c2 / gm1};
+    for (size_t dim = 1; dim < Dimension; ++dim)
+      RightT[1 + dim] = Rp{0, ortho[dim - 1], dot(u_mean, ortho[dim - 1])};
+    RightT[1 + Dimension] = {1, u_mean + cspeed * normal, H_mean + uscaln * cspeed};
+
+    Right = RightT.transpose();
+
+    const double invc2 = 1. / c2;
+    Left[0]            = .5 * invc2 * Rp{K + uscaln * cspeed, (-gm1 * u_mean - cspeed * normal), gm1};
+    Left[1]            = gm1 * invc2 * Rp{H_mean - u2, u_mean, -1};
+    for (size_t dim = 1; dim < Dimension; ++dim)
+      Left[1 + dim] = Rp{-dot(u_mean, ortho[dim - 1]), ortho[dim - 1], 0};
+    Left[1 + Dimension] = .5 * invc2 * Rp{K - uscaln * cspeed, (-gm1 * u_mean + cspeed * normal), gm1};
+
+    /*
+                                        Right(0, 0) = 1;
+                                        Right(0, 1) = 1;
+                                        Right(0, 2) = 0;
+                                        Right(0, 3) = 1;
+
+                                        Right(1, 0) = u - cspeed * nx / length;
+                                        Right(1, 1) = u;
+                                        Right(1, 2) = -ny / length;
+                                        Right(1, 3) = u + cspeed * nx / length;
+
+                                        Right(2, 0) = v - cspeed * ny / length;
+                                        Right(2, 1) = v;
+                                        Right(2, 2) = nx / length;
+                                        Right(2, 3) = v + cspeed * ny / length;
+
+                                        Right(3, 0) = H_meandof - uscaln * cspeed / length;
+                                        Right(3, 1) = NrjCin;
+                                        Right(3, 2) = (u_meandof, R2(-ny, nx)) / length;
+                                        Right(3, 3) = H_meandof + uscaln * cspeed / length;
+                                        */
+
+    /*
+      Left(0,0)=((gamma-1)*NrjCin+uscaln*cspeed/lengthl)/2/(cspeed*cspeed);
+      Left(0,1)=-((gamma-1)*u+nx*cspeed/lengthl)/2/(cspeed*cspeed);
+      Left(0,2)=-((gamma-1)*v+ny*cspeed/lengthl)/2/(cspeed*cspeed); Left(0,3)=(gamma-1)/2/(cspeed*cspeed);
+
+      Left(1,0)=1-(gamma-1)*NrjCin/(cspeed*cspeed);
+      Left(1,1)=(gamma-1)*u/(cspeed*cspeed);Left(1,2)=(gamma-1)*v/(cspeed*cspeed);Left(1,3)=(1-gamma)/(cspeed*cspeed);
+
+      //Left(2,0)=-(u_meandof,R2(-ny,nx))/lengthl/cspeed;           Left(2,1)=-ny/lengthl/cspeed;
+      Left(2,2)=nx/lengthl/cspeed;  Left(2,3)=0; Left(2,0)=-(u_meandof,R2(-ny,nx))/lengthl; Left(2,1)=-ny/lengthl;
+      Left(2,2)=nx/lengthl;  Left(2,3)=0;
+      //Left(2,0)=-(u_meandof,R2(-ny,nx));           Left(2,1)=-ny;                 Left(2,2)=nx;  Left(2,3)=0;
+      Left(3,0)=((gamma-1)*NrjCin-uscaln*cspeed/lengthl)/2/(cspeed*cspeed);
+      Left(3,1)=-((gamma-1)*u-nx*cspeed/lengthl)/2/(cspeed*cspeed);
+      Left(3,2)=-((gamma-1)*v-ny*cspeed/lengthl)/2/(cspeed*cspeed); Left(3,3)=(gamma-1)/2/(cspeed*cspeed);
+
+    */
+    Right = zero;
+    Left  = zero;
+  }
+
+  std::tuple<std::shared_ptr<const DiscreteFunctionVariant>,
+             std::shared_ptr<const DiscreteFunctionVariant>,
+             std::shared_ptr<const DiscreteFunctionVariant>>
+  solve(const std::shared_ptr<const MeshType>& p_mesh,
+        const DiscreteFunctionP0<const double>& rho_n,
+        const DiscreteFunctionP0<const Rd>& u_n,
+        const DiscreteFunctionP0<const double>& E_n,
+        const double& gamma,
+        const DiscreteFunctionP0<const double>& c_n,
+        const DiscreteFunctionP0<const double>& p_n,
+        const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list,
+        const double& dt,
+        const bool checkLocalConservation) const
+  {
+    auto rho = copy(rho_n);
+    auto u   = copy(u_n);
+    auto E   = copy(E_n);
+    // auto c   = copy(c_n);
+    // auto p   = copy(p_n);
+
+    auto bc_list = this->_getBCList(*p_mesh, bc_descriptor_list);
+
+    auto rhoE = rho * E;
+    auto rhoU = rho * u;
+
+    // Construction du vecteur des variables conservatives
+    //
+    // Ci dessous juste ordre 1
+    //
+    CellValue<Rp> State{p_mesh->connectivity()};
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+        State[j][0] = rho[j];
+        for (size_t d = 0; d < Dimension; ++d)
+          State[j][1 + d] = rhoU[j][d];
+        State[j][1 + Dimension] = rhoE[j];
+      });
+
+    // CellValue<Rp> State{p_mesh->connectivity()};
+    NodeValuePerCell<Rp> StateAtNode{p_mesh->connectivity()};
+    StateAtNode.fill(zero);
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { StateAtNode[j].fill(State[j]); });
+    EdgeValuePerCell<Rp> StateAtEdge{p_mesh->connectivity()};
+    StateAtEdge.fill(zero);
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { StateAtEdge[j].fill(State[j]); });
+    FaceValuePerCell<Rp> StateAtFace{p_mesh->connectivity()};
+    StateAtFace.fill(zero);
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) { StateAtFace[j].fill(State[j]); });
+
+    // Conditions aux limites des etats conservatifs
+
+    _applyInflowBoundaryCondition(bc_list, *p_mesh, StateAtNode, StateAtEdge, StateAtFace);
+    //_applyOutflowBoundaryCondition(bc_list, *p_mesh, StateAtNode, StateAtEdge, StateAtFace);
+    _applySymmetricBoundaryCondition(bc_list, *p_mesh, StateAtNode, StateAtEdge, StateAtFace);
+    _applyNeumannflatBoundaryCondition(bc_list, *p_mesh, StateAtNode, StateAtEdge, StateAtFace);
+
+    //
+    // Construction du flux .. ok pour l'ordre 1
+    //
+    CellValue<Rdxd> rhoUtensU{p_mesh->connectivity()};
+    CellValue<Rdxd> Pid(p_mesh->connectivity());
+    Pid.fill(identity);
+    CellValue<Rdxd> rhoUtensUPlusPid{p_mesh->connectivity()};
+    rhoUtensUPlusPid.fill(zero);
+
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+        rhoUtensU[j] = tensorProduct(rhoU[j], u[j]);
+        Pid[j] *= p_n[j];
+        rhoUtensUPlusPid[j] = rhoUtensU[j] + Pid[j];
+      });
+
+    auto Flux_rho    = rhoU;
+    auto Flux_qtmvt  = rhoUtensUPlusPid;   // rhoUtensU + Pid;
+    auto Flux_totnrj = (rhoE + p_n) * u;
+
+    // Flux avec prise en compte des states at Node/Edge/Face
+
+    NodeValuePerCell<Rd> Flux_rhoAtCellNode{p_mesh->connectivity()};
+    EdgeValuePerCell<Rd> Flux_rhoAtCellEdge{p_mesh->connectivity()};
+    FaceValuePerCell<Rd> Flux_rhoAtCellFace{p_mesh->connectivity()};
+    /*
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+        const auto& cell_to_node = cell_to_node_matrix[j];
+
+        for (size_t l = 0; l < cell_to_node.size(); ++l) {
+          for (size_t dim = 0; dim < Dimension; ++dim)
+            Flux_rhoAtCellNode[j][l][dim] = StateAtNode[j][l][0] * StateAtNode[j][l][dim];
+        }
+
+        const auto& cell_to_face = cell_to_face_matrix[j];
+
+        for (size_t l = 0; l < cell_to_face.size(); ++l) {
+          for (size_t dim = 0; dim < Dimension; ++dim)
+            Flux_rhoAtCellFace[j][l][dim] = StateAtFace[j][l][0] * StateAtFace[j][l][dim];
+        }
+
+        const auto& cell_to_edge = cell_to_edge_matrix[j];
+
+        for (size_t l = 0; l < cell_to_edge.size(); ++l) {
+          for (size_t dim = 0; dim < Dimension; ++dim)
+            Flux_rhoAtCellEdge[j][l][dim] = StateAtEdge[j][l][0] * StateAtEdge[j][l][dim];
+        }
+      });
+*/
+    NodeValuePerCell<Rdxd> Flux_qtmvtAtCellNode{p_mesh->connectivity()};   // = rhoUtensUPlusPid;   // rhoUtensU + Pid;
+    EdgeValuePerCell<Rdxd> Flux_qtmvtAtCellEdge{p_mesh->connectivity()};   // = rhoUtensUPlusPid;   // rhoUtensU + Pid;
+    FaceValuePerCell<Rdxd> Flux_qtmvtAtCellFace{p_mesh->connectivity()};   // = rhoUtensUPlusPid;   // rhoUtensU + Pid;
+    /*
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+        const auto& cell_to_node = cell_to_node_matrix[j];
+
+        for (size_t l = 0; l < cell_to_node.size(); ++l) {
+          for (size_t dim = 0; dim < Dimension; ++dim)
+            Flux_qtmvtAtCellNode[j][l][dim] = StateAtNode[j][l][0] * StateAtNode[j][l][dim];
+        }
+
+        const auto& cell_to_face = cell_to_face_matrix[j];
+
+        for (size_t l = 0; l < cell_to_face.size(); ++l) {
+          for (size_t dim = 0; dim < Dimension; ++dim)
+            Flux_qtmvtAtCellFace[j][l][dim] = StateAtFace[j][l][0] * StateAtFace[j][l][dim];
+        }
+
+        const auto& cell_to_edge = cell_to_edge_matrix[j];
+
+        for (size_t l = 0; l < cell_to_edge.size(); ++l) {
+          for (size_t dim = 0; dim < Dimension; ++dim)
+            Flux_qtmvtAtCellEdge[j][l][dim] = StateAtEdge[j][l][0] * StateAtEdge[j][l][dim];
+        }
+      });
+*/
+    // parallel_for(
+    //   p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+    //     Flux_qtmvtAtCellNode[j] = Flux_qtmvtAtCellEdge[j] = Flux_qtmvtAtCellFace[j] = Flux_qtmvt[j];
+    //   });
+
+    NodeValuePerCell<Rd> Flux_totnrjAtCellNode{p_mesh->connectivity()};
+    EdgeValuePerCell<Rd> Flux_totnrjAtCellEdge{p_mesh->connectivity()};
+    FaceValuePerCell<Rd> Flux_totnrjAtCellFace{p_mesh->connectivity()};
+
+    const auto& cell_to_node_matrix = p_mesh->connectivity().cellToNodeMatrix();
+    const auto& cell_to_edge_matrix = p_mesh->connectivity().cellToEdgeMatrix();
+    const auto& cell_to_face_matrix = p_mesh->connectivity().cellToFaceMatrix();
+
+    Flux_rhoAtCellEdge.fill(zero);
+    Flux_totnrjAtCellEdge.fill(zero);
+    Flux_qtmvtAtCellEdge.fill(zero);
+
+    // Les flux aux nodes/edge/faces
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+        const auto& cell_to_node = cell_to_node_matrix[j];
+
+        for (size_t l = 0; l < cell_to_node.size(); ++l) {
+          // Etats conservatifs aux noeuds
+          const double rhonode = StateAtNode[j][l][0];
+          Rd Unode;
+          for (size_t dim = 0; dim < Dimension; ++dim)
+            Unode[dim] = StateAtNode[j][l][dim + 1] / rhonode;
+          const double rhoEnode = StateAtNode[j][l][Dimension + 1];
+          //
+          const double Enode       = rhoEnode / rhonode;
+          const double epsilonnode = Enode - .5 * dot(Unode, Unode);
+          const Rd rhoUnode        = rhonode * Unode;
+          const Rdxd rhoUtensUnode = tensorProduct(rhoUnode, Unode);
+
+          const double Pressionnode = pression(rhonode, epsilonnode, gamma);
+
+          const double rhoEnodePlusP = rhoEnode + Pressionnode;
+
+          Rdxd rhoUtensUPlusPidnode(identity);
+          rhoUtensUPlusPidnode *= Pressionnode;
+          rhoUtensUPlusPidnode += rhoUtensUnode;
+
+          Flux_rhoAtCellNode[j][l]    = rhoUnode;
+          Flux_qtmvtAtCellNode[j][l]  = rhoUtensUPlusPidnode;
+          Flux_totnrjAtCellNode[j][l] = rhoEnodePlusP * Unode;
+        }
+
+        const auto& cell_to_face = cell_to_face_matrix[j];
+
+        for (size_t l = 0; l < cell_to_face.size(); ++l) {
+          const double rhoface = StateAtFace[j][l][0];
+          Rd Uface;
+          for (size_t dim = 0; dim < Dimension; ++dim)
+            Uface[dim] = StateAtFace[j][l][dim + 1] / rhoface;
+          const double rhoEface = StateAtFace[j][l][Dimension + 1];
+          //
+          const double Eface       = rhoEface / rhoface;
+          const double epsilonface = Eface - .5 * dot(Uface, Uface);
+          const Rd rhoUface        = rhoface * Uface;
+          const Rdxd rhoUtensUface = tensorProduct(rhoUface, Uface);
+
+          const double Pressionface = pression(rhoface, epsilonface, gamma);
+
+          const double rhoEfacePlusP = rhoEface + Pressionface;
+
+          Rdxd rhoUtensUPlusPidface(identity);
+          rhoUtensUPlusPidface *= Pressionface;
+          rhoUtensUPlusPidface += rhoUtensUface;
+
+          Flux_rhoAtCellFace[j][l]    = rhoUface;
+          Flux_qtmvtAtCellFace[j][l]  = rhoUtensUPlusPidface;
+          Flux_totnrjAtCellFace[j][l] = rhoEfacePlusP * Uface;
+        }
+
+        if constexpr (Dimension == 3) {
+          const auto& cell_to_edge = cell_to_edge_matrix[j];
+
+          for (size_t l = 0; l < cell_to_edge.size(); ++l) {
+            const double rhoedge = StateAtEdge[j][l][0];
+            Rd Uedge;
+            for (size_t dim = 0; dim < Dimension; ++dim)
+              Uedge[dim] = StateAtEdge[j][l][dim + 1] / rhoedge;
+            const double rhoEedge = StateAtEdge[j][l][Dimension + 1];
+            //
+            const double Eedge       = rhoEedge / rhoedge;
+            const double epsilonedge = Eedge - .5 * dot(Uedge, Uedge);
+            const Rd rhoUedge        = rhoedge * Uedge;
+            const Rdxd rhoUtensUedge = tensorProduct(rhoUedge, Uedge);
+
+            const double Pressionedge = pression(rhoedge, epsilonedge, gamma);
+
+            const double rhoEedgePlusP = rhoEedge + Pressionedge;
+
+            Rdxd rhoUtensUPlusPidedge(identity);
+            rhoUtensUPlusPidedge *= Pressionedge;
+            rhoUtensUPlusPidedge += rhoUtensUedge;
+
+            Flux_rhoAtCellEdge[j][l]    = rhoUedge;
+            Flux_qtmvtAtCellEdge[j][l]  = rhoUtensUPlusPidedge;
+            Flux_totnrjAtCellEdge[j][l] = rhoEedgePlusP * Uedge;
+          }
+        }
+      });
+
+    // parallel_for(
+    //   p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+    //     Flux_totnrjAtCellNode[j] = Flux_totnrjAtCellEdge[j] = Flux_totnrjAtCellFace[j] = Flux_totnrj[j];
+    //   });
+
+    MeshData<MeshType>& mesh_data = MeshDataManager::instance().getMeshData(*p_mesh);
+
+    auto volumes_cell = mesh_data.Vj();
+
+    // Calcul des matrices de viscosité aux node/edge/face
+
+    const NodeValuePerCell<const Rd> Cjr = mesh_data.Cjr();
+    const NodeValuePerCell<const Rd> njr = mesh_data.njr();
+
+    const FaceValuePerCell<const Rd> Cjf = mesh_data.Cjf();
+    const FaceValuePerCell<const Rd> njf = mesh_data.njf();
+
+    const auto& node_to_cell_matrix               = p_mesh->connectivity().nodeToCellMatrix();
+    const auto& node_local_numbers_in_their_cells = p_mesh->connectivity().nodeLocalNumbersInTheirCells();
+
+    const auto& face_to_cell_matrix               = p_mesh->connectivity().faceToCellMatrix();
+    const auto& face_local_numbers_in_their_cells = p_mesh->connectivity().faceLocalNumbersInTheirCells();
+
+    // We compute Gjr, Gjf
+
+    NodeValuePerCell<Rp> Gjr{p_mesh->connectivity()};
+    Gjr.fill(zero);
+    EdgeValuePerCell<Rp> Gje{p_mesh->connectivity()};
+    Gje.fill(zero);
+    FaceValuePerCell<Rp> Gjf{p_mesh->connectivity()};
+    Gjf.fill(zero);
+
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+        const auto& cell_to_node = cell_to_node_matrix[j];
+
+        for (size_t l = 0; l < cell_to_node.size(); ++l) {
+          const NodeId& node                         = cell_to_node[l];
+          const auto& node_to_cell                   = node_to_cell_matrix[node];
+          const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemArray(node);
+
+          const Rd& Cjr_loc = Cjr(j, l);
+
+          for (size_t k = 0; k < node_to_cell.size(); ++k) {
+            const CellId K    = node_to_cell[k];
+            const size_t R    = node_local_number_in_its_cells[k];
+            const Rd& Ckr_loc = Cjr(K, R);
+
+            // Une moyenne entre les etats jk
+
+            Rd uNode     = .5 * (u_n[j] + u_n[K]);
+            double cNode = .5 * (c_n[j] + c_n[K]);
+
+            // Viscosity j k
+            Rpxp ViscosityMatrixJK(identity);
+            const double MaxmaxabsVpNormjk =
+              std::max(toolsCompositeSolver::EvaluateMaxEigenValueTimesNormalLengthInGivenDirection(uNode, cNode,
+                                                                                                    Cjr_loc),
+                       toolsCompositeSolver::EvaluateMaxEigenValueTimesNormalLengthInGivenDirection(uNode, cNode,
+                                                                                                    Ckr_loc));
+
+            ViscosityMatrixJK *= MaxmaxabsVpNormjk;
+            const Rd& u_Cjr = Flux_qtmvtAtCellNode[K][R] * Cjr_loc;   // Flux_qtmvt[K] * Cjr_loc;
+
+            const Rp& statediff = StateAtNode[j][l] - StateAtNode[K][R];   // State[j] - State[K];
+            const Rp& diff      = ViscosityMatrixJK * statediff;
+
+            Gjr[j][l][0] += dot(Flux_rhoAtCellNode[K][R], Cjr_loc);   // dot(Flux_rho[K], Cjr_loc);
+            for (size_t d = 0; d < Dimension; ++d)
+              Gjr[j][l][1 + d] += u_Cjr[d];
+            Gjr[j][l][1 + Dimension] += dot(Flux_totnrjAtCellNode[K][R], Cjr_loc);   // dot(Flux_totnrj[K], Cjr_loc);
+
+            Gjr[j][l] += diff;
+          }
+
+          Gjr[j][l] *= 1. / node_to_cell.size();
+        }
+      });
+
+    if (checkLocalConservation) {
+      auto is_boundary_node = p_mesh->connectivity().isBoundaryNode();
+
+      NodeValue<double> MaxErrorConservationNode(p_mesh->connectivity());
+      MaxErrorConservationNode.fill(0.);
+      // double MaxErrorConservationNode = 0;
+      parallel_for(
+        p_mesh->numberOfNodes(), PUGS_LAMBDA(NodeId l) {
+          const auto& node_to_cell                   = node_to_cell_matrix[l];
+          const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemArray(l);
+
+          if (not is_boundary_node[l]) {
+            Rp SumGjr(zero);
+            for (size_t k = 0; k < node_to_cell.size(); ++k) {
+              const CellId K       = node_to_cell[k];
+              const unsigned int R = node_local_number_in_its_cells[k];
+              SumGjr += Gjr[K][R];
+            }
+            // MaxErrorConservationNode = std::max(MaxErrorConservationNode, l2Norm(SumGjr));
+            MaxErrorConservationNode[l] = l2Norm(SumGjr);
+          }
+        });
+      std::cout << " Max Error Node " << max(MaxErrorConservationNode) << "\n";
+    }
+    //
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+        // Edge
+        const auto& cell_to_face = cell_to_face_matrix[j];
+
+        for (size_t l = 0; l < cell_to_face.size(); ++l) {
+          const FaceId& face                         = cell_to_face[l];
+          const auto& face_to_cell                   = face_to_cell_matrix[face];
+          const auto& face_local_number_in_its_cells = face_local_numbers_in_their_cells.itemArray(face);
+
+          const Rd& Cjf_loc = Cjf(j, l);
+
+          for (size_t k = 0; k < face_to_cell.size(); ++k) {
+            const CellId K       = face_to_cell[k];
+            const unsigned int R = face_local_number_in_its_cells[k];
+            const Rd& Ckf_loc    = Cjf(K, R);
+            // Une moyenne entre les etats jk
+
+            Rd uFace     = .5 * (u_n[j] + u_n[K]);
+            double cFace = .5 * (c_n[j] + c_n[K]);
+
+            // Viscosity j k
+            Rpxp ViscosityMatrixJK(identity);
+            const double MaxmaxabsVpNormjk =
+              std::max(toolsCompositeSolver::EvaluateMaxEigenValueTimesNormalLengthInGivenDirection(uFace, cFace,
+                                                                                                    Cjf_loc),
+                       toolsCompositeSolver::EvaluateMaxEigenValueTimesNormalLengthInGivenDirection(uFace, cFace,
+                                                                                                    Ckf_loc));
+
+            ViscosityMatrixJK *= MaxmaxabsVpNormjk;
+
+            const Rd& u_Cjf = Flux_qtmvtAtCellFace[K][R] * Cjf_loc;   // Flux_qtmvt[K] * Cjf_loc;
+
+            const Rp& statediff = StateAtFace[j][l] - StateAtFace[K][R];   // State[j] - State[K];
+            const Rp& diff      = ViscosityMatrixJK * statediff;
+
+            Gjf[j][l][0] += dot(Flux_rhoAtCellFace[K][R], Cjf_loc);   // dot(Flux_rho[K], Cjf_loc);
+            for (size_t d = 0; d < Dimension; ++d)
+              Gjf[j][l][1 + d] += u_Cjf[d];
+            Gjf[j][l][1 + Dimension] += dot(Flux_totnrjAtCellFace[K][R], Cjf_loc);   // dot(Flux_totnrj[K], Cjf_loc);
+
+            Gjf[j][l] += diff;
+          }
+
+          Gjf[j][l] *= 1. / face_to_cell.size();
+        }
+      });
+
+    if (checkLocalConservation) {
+      auto is_boundary_face = p_mesh->connectivity().isBoundaryFace();
+
+      FaceValue<double> MaxErrorConservationFace(p_mesh->connectivity());
+      MaxErrorConservationFace.fill(0.);
+
+      parallel_for(
+        p_mesh->numberOfFaces(), PUGS_LAMBDA(FaceId l) {
+          const auto& face_to_cell                   = face_to_cell_matrix[l];
+          const auto& face_local_number_in_its_cells = face_local_numbers_in_their_cells.itemArray(l);
+
+          if (not is_boundary_face[l]) {
+            Rp SumGjf(zero);
+            for (size_t k = 0; k < face_to_cell.size(); ++k) {
+              const CellId K       = face_to_cell[k];
+              const unsigned int R = face_local_number_in_its_cells[k];
+              SumGjf += Gjf[K][R];
+            }
+            MaxErrorConservationFace[l] = l2Norm(SumGjf);
+            // MaxErrorConservationFace   = std::max(MaxErrorConservationFace, l2Norm(SumGjf));
+          }
+        });
+      std::cout << " Max Error Face " << max(MaxErrorConservationFace) << "\n";
+    }
+
+    if constexpr (Dimension == 3) {
+      const auto& edge_to_cell_matrix               = p_mesh->connectivity().edgeToCellMatrix();
+      const auto& edge_local_numbers_in_their_cells = p_mesh->connectivity().edgeLocalNumbersInTheirCells();
+
+      const EdgeValuePerCell<const Rd> Cje = mesh_data.Cje();
+      const EdgeValuePerCell<const Rd> nje = mesh_data.nje();
+
+      parallel_for(
+        p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+          // Edge
+          const auto& cell_to_edge = cell_to_edge_matrix[j];
+
+          for (size_t l = 0; l < cell_to_edge.size(); ++l) {
+            const EdgeId& edge                         = cell_to_edge[l];
+            const auto& edge_to_cell                   = edge_to_cell_matrix[edge];
+            const auto& edge_local_number_in_its_cells = edge_local_numbers_in_their_cells.itemArray(edge);
+
+            const Rd& Cje_loc = Cje(j, l);
+
+            for (size_t k = 0; k < edge_to_cell.size(); ++k) {
+              const CellId K = edge_to_cell[k];
+              const size_t R = edge_local_number_in_its_cells[k];
+
+              const Rd& Cke_loc = Cje(K, R);
+
+              // Une moyenne entre les etats jk
+
+              Rd uEdge     = .5 * (u_n[j] + u_n[K]);
+              double cEdge = .5 * (c_n[j] + c_n[K]);
+
+              // Viscosity j k
+              Rpxp ViscosityMatrixJK(identity);
+              const double MaxmaxabsVpNormjk =
+                std::max(toolsCompositeSolver::EvaluateMaxEigenValueTimesNormalLengthInGivenDirection(uEdge, cEdge,
+                                                                                                      Cje_loc),
+                         toolsCompositeSolver::EvaluateMaxEigenValueTimesNormalLengthInGivenDirection(uEdge, cEdge,
+                                                                                                      Cke_loc));
+
+              ViscosityMatrixJK *= MaxmaxabsVpNormjk;
+
+              const Rd& u_Cje = Flux_qtmvtAtCellEdge[K][R] * Cje_loc;   // Flux_qtmvt[K] * Cje_loc;
+
+              const Rp& statediff = StateAtEdge[j][l] - StateAtEdge[K][R];   // State[j] - State[K];
+              const Rp& diff      = ViscosityMatrixJK * statediff;
+
+              Gje[j][l][0] += dot(Flux_rhoAtCellEdge[K][R], Cje_loc);   //  dot(Flux_rho[K], Cje_loc);
+              for (size_t d = 0; d < Dimension; ++d)
+                Gje[j][l][1 + d] += u_Cje[d];
+              Gje[j][l][1 + Dimension] += dot(Flux_totnrjAtCellEdge[K][R], Cje_loc);   // dot(Flux_totnrj[K], Cje_loc);
+
+              Gje[j][l] += diff;
+            }
+
+            Gje[j][l] *= 1. / edge_to_cell.size();
+          }
+        });
+
+      if (checkLocalConservation) {
+        auto is_boundary_edge = p_mesh->connectivity().isBoundaryEdge();
+
+        EdgeValue<double> MaxErrorConservationEdge(p_mesh->connectivity());
+        MaxErrorConservationEdge.fill(0.);
+        //  double MaxErrorConservationEdge = 0;
+        parallel_for(
+          p_mesh->numberOfEdges(), PUGS_LAMBDA(EdgeId l) {
+            const auto& edge_to_cell                   = edge_to_cell_matrix[l];
+            const auto& edge_local_number_in_its_cells = edge_local_numbers_in_their_cells.itemArray(l);
+
+            if (not is_boundary_edge[l]) {
+              Rp SumGje(zero);
+              for (size_t k = 0; k < edge_to_cell.size(); ++k) {
+                const CellId K       = edge_to_cell[k];
+                const unsigned int R = edge_local_number_in_its_cells[k];
+                SumGje += Gje[K][R];
+              }
+              // MaxErrorConservationEdge = std::max(MaxErrorConservationEdge, l2norm(SumGje));
+              MaxErrorConservationEdge[l] = l2Norm(SumGje);
+            }
+          });
+        std::cout << " Max Error Edge " << max(MaxErrorConservationEdge) << "\n";
+      }
+    }   // dim 3
+
+    // Pour les assemblages
+    double theta = .5;
+    double eta   = .2;
+    if constexpr (Dimension == 2) {
+      eta = 0;
+    } else {
+      theta = 1. / 3.;
+      eta   = 1. / 3.;
+
+      // theta = .5;
+      // eta   = 0;
+    }
+    //
+    parallel_for(
+      p_mesh->numberOfCells(), PUGS_LAMBDA(CellId j) {
+        const auto& cell_to_node = cell_to_node_matrix[j];
+
+        Rp SumFluxesNode(zero);
+
+        for (size_t l = 0; l < cell_to_node.size(); ++l) {
+          SumFluxesNode += Gjr[j][l];
+        }
+        // SumFluxesNode *= (1 - theta);
+
+        const auto& cell_to_edge = cell_to_edge_matrix[j];
+        Rp SumFluxesEdge(zero);
+
+        for (size_t l = 0; l < cell_to_edge.size(); ++l) {
+          SumFluxesEdge += Gje[j][l];
+        }
+
+        const auto& cell_to_face = cell_to_face_matrix[j];
+        Rp SumFluxesFace(zero);
+
+        for (size_t l = 0; l < cell_to_face.size(); ++l) {
+          SumFluxesFace += Gjf[j][l];
+        }
+        // SumFluxesEdge *= (theta);
+
+        const Rp SumFluxes = (1 - theta - eta) * SumFluxesNode + eta * SumFluxesEdge + theta * SumFluxesFace;
+
+        State[j] -= dt / volumes_cell[j] * SumFluxes;
+
+        rho[j] = State[j][0];
+        for (size_t d = 0; d < Dimension; ++d)
+          u[j][d] = State[j][1 + d] / rho[j];
+        E[j] = State[j][1 + Dimension] / rho[j];
+      });
+
+    return std::make_tuple(std::make_shared<const DiscreteFunctionVariant>(rho),
+                           std::make_shared<const DiscreteFunctionVariant>(u),
+                           std::make_shared<const DiscreteFunctionVariant>(E));
+  }
+
+  RoeViscousFormEulerianCompositeSolver_v2()  = default;
+  ~RoeViscousFormEulerianCompositeSolver_v2() = default;
+};
+
+template <MeshConcept MeshType>
+class RoeViscousFormEulerianCompositeSolver_v2<MeshType>::NeumannBoundaryCondition
+{
+};
+
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<2>>::NeumannBoundaryCondition
+{
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshNodeBoundary m_mesh_node_boundary;
+  const MeshFaceBoundary m_mesh_face_boundary;
+  // const MeshFlatNodeBoundary<MeshType> m_mesh_flat_node_boundary;
+  // const MeshFlatFaceBoundary<MeshType> m_mesh_flat_face_boundary;
+
+ public:
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_node_boundary.nodeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_node_boundary.nodeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_face_boundary.faceList();
+  }
+
+  NeumannBoundaryCondition(const MeshNodeBoundary& mesh_node_boundary, const MeshFaceBoundary& mesh_face_boundary)
+    : m_mesh_node_boundary(mesh_node_boundary), m_mesh_face_boundary(mesh_face_boundary)
+  {
+    ;
+  }
+};
+
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<3>>::NeumannBoundaryCondition
+{
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshNodeBoundary m_mesh_node_boundary;
+  const MeshEdgeBoundary m_mesh_edge_boundary;
+  const MeshFaceBoundary m_mesh_face_boundary;
+
+ public:
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_node_boundary.nodeList().size();
+  }
+  size_t
+  numberOfEdges() const
+  {
+    return m_mesh_edge_boundary.edgeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_node_boundary.nodeList();
+  }
+
+  const Array<const EdgeId>&
+  edgeList() const
+  {
+    return m_mesh_edge_boundary.edgeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_face_boundary.faceList();
+  }
+
+  NeumannBoundaryCondition(const MeshNodeBoundary& mesh_node_boundary,
+                           const MeshEdgeBoundary& mesh_edge_boundary,
+                           const MeshFaceBoundary& mesh_face_boundary)
+    : m_mesh_node_boundary(mesh_node_boundary),
+
+      m_mesh_edge_boundary(mesh_edge_boundary),
+
+      m_mesh_face_boundary(mesh_face_boundary)
+  {
+    ;
+  }
+};
+
+template <MeshConcept MeshType>
+class RoeViscousFormEulerianCompositeSolver_v2<MeshType>::NeumannflatBoundaryCondition
+{
+};
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<2>>::NeumannflatBoundaryCondition
+{
+ public:
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshFlatNodeBoundary<MeshType> m_mesh_flat_node_boundary;
+  const MeshFlatFaceBoundary<MeshType> m_mesh_flat_face_boundary;
+
+ public:
+  const Rd&
+  outgoingNormal() const
+  {
+    return m_mesh_flat_node_boundary.outgoingNormal();
+  }
+
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_flat_node_boundary.nodeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_flat_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_flat_node_boundary.nodeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_flat_face_boundary.faceList();
+  }
+
+  NeumannflatBoundaryCondition(const MeshFlatNodeBoundary<MeshType>& mesh_flat_node_boundary,
+                               const MeshFlatFaceBoundary<MeshType>& mesh_flat_face_boundary)
+    : m_mesh_flat_node_boundary(mesh_flat_node_boundary), m_mesh_flat_face_boundary(mesh_flat_face_boundary)
+  {
+    ;
+  }
+
+  ~NeumannflatBoundaryCondition() = default;
+};
+
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<3>>::NeumannflatBoundaryCondition
+{
+ public:
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshFlatNodeBoundary<MeshType> m_mesh_flat_node_boundary;
+  const MeshFlatEdgeBoundary<MeshType> m_mesh_flat_edge_boundary;
+  const MeshFlatFaceBoundary<MeshType> m_mesh_flat_face_boundary;
+
+ public:
+  const Rd&
+  outgoingNormal() const
+  {
+    return m_mesh_flat_node_boundary.outgoingNormal();
+  }
+
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_flat_node_boundary.nodeList().size();
+  }
+
+  size_t
+  numberOfEdges() const
+  {
+    return m_mesh_flat_edge_boundary.edgeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_flat_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_flat_node_boundary.nodeList();
+  }
+
+  const Array<const EdgeId>&
+  edgeList() const
+  {
+    return m_mesh_flat_edge_boundary.edgeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_flat_face_boundary.faceList();
+  }
+
+  NeumannflatBoundaryCondition(const MeshFlatNodeBoundary<MeshType>& mesh_flat_node_boundary,
+                               const MeshFlatEdgeBoundary<MeshType>& mesh_flat_edge_boundary,
+                               const MeshFlatFaceBoundary<MeshType>& mesh_flat_face_boundary)
+    : m_mesh_flat_node_boundary(mesh_flat_node_boundary),
+      m_mesh_flat_edge_boundary(mesh_flat_edge_boundary),
+      m_mesh_flat_face_boundary(mesh_flat_face_boundary)
+  {
+    ;
+  }
+
+  ~NeumannflatBoundaryCondition() = default;
+};
+
+template <MeshConcept MeshType>
+class RoeViscousFormEulerianCompositeSolver_v2<MeshType>::SymmetryBoundaryCondition
+{
+};
+
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<2>>::SymmetryBoundaryCondition
+{
+ public:
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshFlatNodeBoundary<MeshType> m_mesh_flat_node_boundary;
+  const MeshFlatFaceBoundary<MeshType> m_mesh_flat_face_boundary;
+
+ public:
+  const Rd&
+  outgoingNormal() const
+  {
+    return m_mesh_flat_node_boundary.outgoingNormal();
+  }
+
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_flat_node_boundary.nodeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_flat_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_flat_node_boundary.nodeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_flat_face_boundary.faceList();
+  }
+
+  SymmetryBoundaryCondition(const MeshFlatNodeBoundary<MeshType>& mesh_flat_node_boundary,
+                            const MeshFlatFaceBoundary<MeshType>& mesh_flat_face_boundary)
+    : m_mesh_flat_node_boundary(mesh_flat_node_boundary), m_mesh_flat_face_boundary(mesh_flat_face_boundary)
+  {
+    ;
+  }
+
+  ~SymmetryBoundaryCondition() = default;
+};
+
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<3>>::SymmetryBoundaryCondition
+{
+ public:
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshFlatNodeBoundary<MeshType> m_mesh_flat_node_boundary;
+  const MeshFlatEdgeBoundary<MeshType> m_mesh_flat_edge_boundary;
+  const MeshFlatFaceBoundary<MeshType> m_mesh_flat_face_boundary;
+
+ public:
+  const Rd&
+  outgoingNormal() const
+  {
+    return m_mesh_flat_node_boundary.outgoingNormal();
+  }
+
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_flat_node_boundary.nodeList().size();
+  }
+
+  size_t
+  numberOfEdges() const
+  {
+    return m_mesh_flat_edge_boundary.edgeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_flat_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_flat_node_boundary.nodeList();
+  }
+
+  const Array<const EdgeId>&
+  edgeList() const
+  {
+    return m_mesh_flat_edge_boundary.edgeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_flat_face_boundary.faceList();
+  }
+
+  SymmetryBoundaryCondition(const MeshFlatNodeBoundary<MeshType>& mesh_flat_node_boundary,
+                            const MeshFlatEdgeBoundary<MeshType>& mesh_flat_edge_boundary,
+                            const MeshFlatFaceBoundary<MeshType>& mesh_flat_face_boundary)
+    : m_mesh_flat_node_boundary(mesh_flat_node_boundary),
+      m_mesh_flat_edge_boundary(mesh_flat_edge_boundary),
+      m_mesh_flat_face_boundary(mesh_flat_face_boundary)
+  {
+    ;
+  }
+
+  ~SymmetryBoundaryCondition() = default;
+};
+
+template <MeshConcept MeshType>
+class RoeViscousFormEulerianCompositeSolver_v2<MeshType>::InflowListBoundaryCondition
+{
+};
+
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<2>>::InflowListBoundaryCondition
+{
+ public:
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshNodeBoundary m_mesh_node_boundary;
+  const MeshFaceBoundary m_mesh_face_boundary;
+  const Table<const double> m_node_array_list;
+  const Table<const double> m_face_array_list;
+
+ public:
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_node_boundary.nodeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_node_boundary.nodeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_face_boundary.faceList();
+  }
+
+  const Table<const double>&
+  nodeArrayList() const
+  {
+    return m_node_array_list;
+  }
+
+  const Table<const double>&
+  faceArrayList() const
+  {
+    return m_face_array_list;
+  }
+
+  InflowListBoundaryCondition(const MeshNodeBoundary& mesh_node_boundary,
+                              const MeshFaceBoundary& mesh_face_boundary,
+                              const Table<const double>& node_array_list,
+                              const Table<const double>& face_array_list)
+    : m_mesh_node_boundary(mesh_node_boundary),
+      m_mesh_face_boundary(mesh_face_boundary),
+      m_node_array_list(node_array_list),
+      m_face_array_list(face_array_list)
+  {
+    ;
+  }
+
+  ~InflowListBoundaryCondition() = default;
+};
+
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<3>>::InflowListBoundaryCondition
+{
+ public:
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshNodeBoundary m_mesh_node_boundary;
+  const MeshEdgeBoundary m_mesh_edge_boundary;
+  const MeshFaceBoundary m_mesh_face_boundary;
+  const Table<const double> m_node_array_list;
+  const Table<const double> m_edge_array_list;
+  const Table<const double> m_face_array_list;
+
+ public:
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_node_boundary.nodeList().size();
+  }
+
+  size_t
+  numberOfEdges() const
+  {
+    return m_mesh_edge_boundary.edgeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_node_boundary.nodeList();
+  }
+
+  const Array<const EdgeId>&
+  edgeList() const
+  {
+    return m_mesh_edge_boundary.edgeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_face_boundary.faceList();
+  }
+
+  const Table<const double>&
+  nodeArrayList() const
+  {
+    return m_node_array_list;
+  }
+
+  const Table<const double>&
+  edgeArrayList() const
+  {
+    return m_edge_array_list;
+  }
+
+  const Table<const double>&
+  faceArrayList() const
+  {
+    return m_face_array_list;
+  }
+
+  InflowListBoundaryCondition(const MeshNodeBoundary& mesh_node_boundary,
+                              const MeshEdgeBoundary& mesh_edge_boundary,
+                              const MeshFaceBoundary& mesh_face_boundary,
+                              const Table<const double>& node_array_list,
+                              const Table<const double>& edge_array_list,
+                              const Table<const double>& face_array_list)
+    : m_mesh_node_boundary(mesh_node_boundary),
+      m_mesh_edge_boundary(mesh_edge_boundary),
+      m_mesh_face_boundary(mesh_face_boundary),
+      m_node_array_list(node_array_list),
+      m_edge_array_list(edge_array_list),
+      m_face_array_list(face_array_list)
+  {
+    ;
+  }
+
+  ~InflowListBoundaryCondition() = default;
+};
+
+template <MeshConcept MeshType>
+class RoeViscousFormEulerianCompositeSolver_v2<MeshType>::OutflowBoundaryCondition
+{
+};
+
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<2>>::OutflowBoundaryCondition
+{
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshNodeBoundary m_mesh_node_boundary;
+  const MeshFaceBoundary m_mesh_face_boundary;
+
+ public:
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_node_boundary.nodeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_node_boundary.nodeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_face_boundary.faceList();
+  }
+
+  OutflowBoundaryCondition(const MeshNodeBoundary& mesh_node_boundary, const MeshFaceBoundary& mesh_face_boundary)
+    : m_mesh_node_boundary(mesh_node_boundary), m_mesh_face_boundary(mesh_face_boundary)
+  {
+    ;
+  }
+};
+
+template <>
+class RoeViscousFormEulerianCompositeSolver_v2<Mesh<3>>::OutflowBoundaryCondition
+{
+  using Rd = TinyVector<Dimension, double>;
+
+ private:
+  const MeshNodeBoundary m_mesh_node_boundary;
+  const MeshEdgeBoundary m_mesh_edge_boundary;
+  const MeshFaceBoundary m_mesh_face_boundary;
+
+ public:
+  size_t
+  numberOfNodes() const
+  {
+    return m_mesh_node_boundary.nodeList().size();
+  }
+  size_t
+  numberOfEdges() const
+  {
+    return m_mesh_edge_boundary.edgeList().size();
+  }
+
+  size_t
+  numberOfFaces() const
+  {
+    return m_mesh_face_boundary.faceList().size();
+  }
+
+  const Array<const NodeId>&
+  nodeList() const
+  {
+    return m_mesh_node_boundary.nodeList();
+  }
+
+  const Array<const EdgeId>&
+  edgeList() const
+  {
+    return m_mesh_edge_boundary.edgeList();
+  }
+
+  const Array<const FaceId>&
+  faceList() const
+  {
+    return m_mesh_face_boundary.faceList();
+  }
+
+  OutflowBoundaryCondition(const MeshNodeBoundary& mesh_node_boundary,
+                           const MeshEdgeBoundary& mesh_edge_boundary,
+                           const MeshFaceBoundary& mesh_face_boundary)
+    : m_mesh_node_boundary(mesh_node_boundary),
+
+      m_mesh_edge_boundary(mesh_edge_boundary),
+
+      m_mesh_face_boundary(mesh_face_boundary)
+  {
+    ;
+  }
+};
+
+std::tuple<std::shared_ptr<const DiscreteFunctionVariant>,
+           std::shared_ptr<const DiscreteFunctionVariant>,
+           std::shared_ptr<const DiscreteFunctionVariant>>
+roeViscousFormEulerianCompositeSolver_v2(
+  const std::shared_ptr<const DiscreteFunctionVariant>& rho_v,
+  const std::shared_ptr<const DiscreteFunctionVariant>& u_v,
+  const std::shared_ptr<const DiscreteFunctionVariant>& E_v,
+  const double& gamma,
+  const std::shared_ptr<const DiscreteFunctionVariant>& c_v,
+  const std::shared_ptr<const DiscreteFunctionVariant>& p_v,
+  const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list,
+  const double& dt,
+  const bool check)
+{
+  std::shared_ptr mesh_v = getCommonMesh({rho_v, u_v, E_v, c_v, p_v});
+  if (not mesh_v) {
+    throw NormalError("discrete functions are not defined on the same mesh");
+  }
+
+  if (not checkDiscretizationType({rho_v, u_v, E_v}, DiscreteFunctionType::P0)) {
+    throw NormalError("acoustic solver expects P0 functions");
+  }
+
+  return std::visit(
+    PUGS_LAMBDA(auto&& p_mesh)
+      ->std::tuple<std::shared_ptr<const DiscreteFunctionVariant>, std::shared_ptr<const DiscreteFunctionVariant>,
+                   std::shared_ptr<const DiscreteFunctionVariant>> {
+        using MeshType                    = mesh_type_t<decltype(p_mesh)>;
+        static constexpr size_t Dimension = MeshType::Dimension;
+        using Rd                          = TinyVector<Dimension>;
+
+        if constexpr (Dimension == 1) {
+          throw NormalError("RoeViscousFormEulerianCompositeSolver v2 is not available in 1D");
+        } else {
+          if constexpr (is_polygonal_mesh_v<MeshType>) {
+            return RoeViscousFormEulerianCompositeSolver_v2<MeshType>{}
+              .solve(p_mesh, rho_v->get<DiscreteFunctionP0<const double>>(), u_v->get<DiscreteFunctionP0<const Rd>>(),
+                     E_v->get<DiscreteFunctionP0<const double>>(), gamma, c_v->get<DiscreteFunctionP0<const double>>(),
+                     p_v->get<DiscreteFunctionP0<const double>>(), bc_descriptor_list, dt, check);
+          } else {
+            throw NormalError("RoeViscousFormEulerianCompositeSolver v2 is only defined on polygonal meshes");
+          }
+        }
+      },
+    mesh_v->variant());
+}
+
+template <MeshConcept MeshType>
+void
+RoeViscousFormEulerianCompositeSolver_v2<MeshType>::_applyOutflowBoundaryCondition(
+  const BoundaryConditionList& bc_list,
+  const MeshType& mesh,
+  NodeValuePerCell<Rp>& stateNode,
+  EdgeValuePerCell<Rp>& stateEdge,
+  FaceValuePerCell<Rp>& stateFace) const
+{
+  for (const auto& boundary_condition : bc_list) {
+    std::visit(
+      [&](auto&& bc) {
+        using T = std::decay_t<decltype(bc)>;
+        if constexpr (std::is_same_v<OutflowBoundaryCondition, T>) {
+          std::cout << " Traitement Outflow  \n";
+          // const Rd& normal = bc.outgoingNormal();
+          /*
+          const auto& node_to_cell_matrix = mesh.connectivity().nodeToCellMatrix();
+          const auto& face_to_cell_matrix = mesh.connectivity().faceToCellMatrix();
+
+          const auto& node_local_numbers_in_their_cells = mesh.connectivity().nodeLocalNumbersInTheirCells();
+          const auto& face_local_numbers_in_their_cells = mesh.connectivity().faceLocalNumbersInTheirCells();
+          // const auto& face_cell_is_reversed             = mesh.connectivity().cellFaceIsReversed();
+
+          const auto& face_list = bc.faceList();
+          const auto& node_list = bc.nodeList();
+
+          const auto xj = mesh.xj();
+          const auto xr = mesh.xr();
+          const auto xf = mesh.xl();
+          const auto xe = mesh.xe();
+
+          for (size_t i_node = 0; i_node < node_list.size(); ++i_node) {
+            const NodeId node_id = node_list[i_node];
+
+            const auto& node_cell_list = node_to_cell_matrix[node_id];
+            // Assert(face_cell_list.size() == 1);
+            const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemArray(node_id);
+
+            for (size_t i_cell = 0; i_cell < node_cell_list.size(); ++i_cell) {
+              CellId node_cell_id              = node_cell_list[i_cell];
+              size_t node_local_number_in_cell = node_local_number_in_its_cells[i_cell];
+
+              for (size_t dim = 0; dim < Dimension + 2; ++dim)
+                stateNode[node_cell_id][node_local_number_in_cell][dim] += vectorSym[dim];
+
+              Rd vectorSym(zero);
+              for (size_t dim = 0; dim < Dimension; ++dim)
+                vectorSym[dim] = stateNode[node_cell_id][node_local_number_in_cell][1 + dim];
+
+              Rdxd MatriceProj(identity);
+              MatriceProj -= tensorProduct(normal, normal);
+              vectorSym = MatriceProj * vectorSym;
+
+              for (size_t dim = 0; dim < Dimension; ++dim)
+                stateNode[node_cell_id][node_local_number_in_cell][dim + 1] = vectorSym[dim];
+              //  stateNode[node_cell_id][node_local_number_in_cell][dim] = 0;   // node_array_list[i_node][dim];
+            }
+          }
+
+          for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
+            const FaceId face_id = face_list[i_face];
+
+            const auto& face_cell_list = face_to_cell_matrix[face_id];
+            Assert(face_cell_list.size() == 1);
+
+            CellId face_cell_id              = face_cell_list[0];
+            size_t face_local_number_in_cell = face_local_numbers_in_their_cells(face_id, 0);
+
+            Rd vectorSym(zero);
+            for (size_t dim = 0; dim < Dimension; ++dim)
+              vectorSym[dim] = stateEdge[face_cell_id][face_local_number_in_cell][1 + dim];
+
+            Rdxd MatriceProj(identity);
+            MatriceProj -= tensorProduct(normal, normal);
+            vectorSym = MatriceProj * vectorSym;
+
+            for (size_t dim = 0; dim < Dimension; ++dim)
+              stateFace[face_cell_id][face_local_number_in_cell][dim + 1] = vectorSym[dim];
+          }
+
+          if constexpr (Dimension == 3) {
+            const auto& edge_to_cell_matrix = mesh.connectivity().edgeToCellMatrix();
+
+            const auto& edge_local_numbers_in_their_cells = mesh.connectivity().edgeLocalNumbersInTheirCells();
+
+            const auto& edge_list = bc.edgeList();
+
+            for (size_t i_edge = 0; i_edge < edge_list.size(); ++i_edge) {
+              const EdgeId edge_id = edge_list[i_edge];
+
+              const auto& edge_cell_list = edge_to_cell_matrix[edge_id];
+              // Assert(face_cell_list.size() == 1);
+              const auto& edge_local_number_in_its_cells = edge_local_numbers_in_their_cells.itemArray(edge_id);
+
+              for (size_t i_cell = 0; i_cell < edge_cell_list.size(); ++i_cell) {
+                CellId edge_cell_id              = edge_cell_list[i_cell];
+                size_t edge_local_number_in_cell = edge_local_number_in_its_cells[i_cell];
+
+                Rd vectorSym(zero);
+                for (size_t dim = 0; dim < Dimension; ++dim)
+                  vectorSym[dim] = stateEdge[edge_cell_id][edge_local_number_in_cell][1 + dim];
+
+                Rdxd MatriceProj(identity);
+                MatriceProj -= tensorProduct(normal, normal);
+                vectorSym = MatriceProj * vectorSym;
+
+                for (size_t dim = 0; dim < Dimension; ++dim)
+                  stateEdge[edge_cell_id][edge_local_number_in_cell][dim + 1] = vectorSym[dim];
+              }
+            }
+
+            //          throw NormalError("Not implemented");
+          }
+          */
+        }
+      },
+      boundary_condition);
+  }
+}
+
+template <MeshConcept MeshType>
+void
+RoeViscousFormEulerianCompositeSolver_v2<MeshType>::_applySymmetricBoundaryCondition(
+  const BoundaryConditionList& bc_list,
+  const MeshType& mesh,
+  NodeValuePerCell<Rp>& stateNode,
+  EdgeValuePerCell<Rp>& stateEdge,
+  FaceValuePerCell<Rp>& stateFace) const
+{
+  for (const auto& boundary_condition : bc_list) {
+    std::visit(
+      [&](auto&& bc) {
+        using T = std::decay_t<decltype(bc)>;
+        if constexpr (std::is_same_v<SymmetryBoundaryCondition, T>) {
+          // MeshData<MeshType>& mesh_data = MeshDataManager::instance().getMeshData(mesh);
+          std::cout << " Traitement SYMMETRY  \n";
+          const Rd& normal = bc.outgoingNormal();
+
+          const auto& node_to_cell_matrix = mesh.connectivity().nodeToCellMatrix();
+          const auto& face_to_cell_matrix = mesh.connectivity().faceToCellMatrix();
+
+          const auto& node_local_numbers_in_their_cells = mesh.connectivity().nodeLocalNumbersInTheirCells();
+          const auto& face_local_numbers_in_their_cells = mesh.connectivity().faceLocalNumbersInTheirCells();
+          // const auto& face_cell_is_reversed             = mesh.connectivity().cellFaceIsReversed();
+
+          const auto& face_list = bc.faceList();
+          const auto& node_list = bc.nodeList();
+
+          for (size_t i_node = 0; i_node < node_list.size(); ++i_node) {
+            const NodeId node_id = node_list[i_node];
+
+            const auto& node_cell_list = node_to_cell_matrix[node_id];
+            // Assert(face_cell_list.size() == 1);
+            const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemArray(node_id);
+
+            for (size_t i_cell = 0; i_cell < node_cell_list.size(); ++i_cell) {
+              CellId node_cell_id              = node_cell_list[i_cell];
+              size_t node_local_number_in_cell = node_local_number_in_its_cells[i_cell];
+
+              Rd vectorSym(zero);
+              for (size_t dim = 0; dim < Dimension; ++dim)
+                vectorSym[dim] = stateNode[node_cell_id][node_local_number_in_cell][1 + dim];
+
+              Rdxd MatriceProj(identity);
+              MatriceProj -= tensorProduct(normal, normal);
+              vectorSym = MatriceProj * vectorSym;
+
+              for (size_t dim = 0; dim < Dimension; ++dim)
+                stateNode[node_cell_id][node_local_number_in_cell][dim + 1] = vectorSym[dim];
+              //  stateNode[node_cell_id][node_local_number_in_cell][dim] = 0;   // node_array_list[i_node][dim];
+            }
+          }
+
+          for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
+            const FaceId face_id = face_list[i_face];
+
+            const auto& face_cell_list = face_to_cell_matrix[face_id];
+            Assert(face_cell_list.size() == 1);
+
+            CellId face_cell_id              = face_cell_list[0];
+            size_t face_local_number_in_cell = face_local_numbers_in_their_cells(face_id, 0);
+
+            Rd vectorSym(zero);
+            for (size_t dim = 0; dim < Dimension; ++dim)
+              vectorSym[dim] = stateEdge[face_cell_id][face_local_number_in_cell][1 + dim];
+
+            Rdxd MatriceProj(identity);
+            MatriceProj -= tensorProduct(normal, normal);
+            vectorSym = MatriceProj * vectorSym;
+
+            for (size_t dim = 0; dim < Dimension; ++dim)
+              stateFace[face_cell_id][face_local_number_in_cell][dim + 1] = vectorSym[dim];
+          }
+
+          if constexpr (Dimension == 3) {
+            const auto& edge_to_cell_matrix = mesh.connectivity().edgeToCellMatrix();
+
+            const auto& edge_local_numbers_in_their_cells = mesh.connectivity().edgeLocalNumbersInTheirCells();
+
+            const auto& edge_list = bc.edgeList();
+
+            for (size_t i_edge = 0; i_edge < edge_list.size(); ++i_edge) {
+              const EdgeId edge_id = edge_list[i_edge];
+
+              const auto& edge_cell_list = edge_to_cell_matrix[edge_id];
+              // Assert(face_cell_list.size() == 1);
+              const auto& edge_local_number_in_its_cells = edge_local_numbers_in_their_cells.itemArray(edge_id);
+
+              for (size_t i_cell = 0; i_cell < edge_cell_list.size(); ++i_cell) {
+                CellId edge_cell_id              = edge_cell_list[i_cell];
+                size_t edge_local_number_in_cell = edge_local_number_in_its_cells[i_cell];
+
+                Rd vectorSym(zero);
+                for (size_t dim = 0; dim < Dimension; ++dim)
+                  vectorSym[dim] = stateEdge[edge_cell_id][edge_local_number_in_cell][1 + dim];
+
+                Rdxd MatriceProj(identity);
+                MatriceProj -= tensorProduct(normal, normal);
+                vectorSym = MatriceProj * vectorSym;
+
+                for (size_t dim = 0; dim < Dimension; ++dim)
+                  stateEdge[edge_cell_id][edge_local_number_in_cell][dim + 1] = vectorSym[dim];
+              }
+            }
+          }
+        }
+      },
+      boundary_condition);
+  }
+}
+
+template <MeshConcept MeshType>
+void
+RoeViscousFormEulerianCompositeSolver_v2<MeshType>::_applyNeumannflatBoundaryCondition(
+  const BoundaryConditionList& bc_list,
+  const MeshType& mesh,
+  NodeValuePerCell<Rp>& stateNode,
+  EdgeValuePerCell<Rp>& stateEdge,
+  FaceValuePerCell<Rp>& stateFace) const
+{
+  for (const auto& boundary_condition : bc_list) {
+    std::visit(
+      [&](auto&& bc) {
+        using T = std::decay_t<decltype(bc)>;
+        if constexpr (std::is_same_v<NeumannflatBoundaryCondition, T>) {
+          // MeshData<MeshType>& mesh_data = MeshDataManager::instance().getMeshData(mesh);
+          std::cout << " Traitement WALL  \n";
+          const Rd& normal = bc.outgoingNormal();
+
+          const auto& node_to_cell_matrix = mesh.connectivity().nodeToCellMatrix();
+          const auto& face_to_cell_matrix = mesh.connectivity().faceToCellMatrix();
+
+          const auto& node_local_numbers_in_their_cells = mesh.connectivity().nodeLocalNumbersInTheirCells();
+          const auto& face_local_numbers_in_their_cells = mesh.connectivity().faceLocalNumbersInTheirCells();
+          // const auto& face_cell_is_reversed             = mesh.connectivity().cellFaceIsReversed();
+
+          const auto& face_list = bc.faceList();
+          const auto& node_list = bc.nodeList();
+
+          for (size_t i_node = 0; i_node < node_list.size(); ++i_node) {
+            const NodeId node_id = node_list[i_node];
+
+            const auto& node_cell_list = node_to_cell_matrix[node_id];
+            // Assert(face_cell_list.size() == 1);
+            const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemArray(node_id);
+
+            for (size_t i_cell = 0; i_cell < node_cell_list.size(); ++i_cell) {
+              CellId node_cell_id              = node_cell_list[i_cell];
+              size_t node_local_number_in_cell = node_local_number_in_its_cells[i_cell];
+
+              Rd vectorSym(zero);
+              for (size_t dim = 0; dim < Dimension; ++dim)
+                vectorSym[dim] = stateNode[node_cell_id][node_local_number_in_cell][1 + dim];
+
+              vectorSym -= dot(vectorSym, normal) * normal;
+
+              for (size_t dim = 0; dim < Dimension; ++dim)
+                stateNode[node_cell_id][node_local_number_in_cell][dim + 1] = vectorSym[dim];
+              //  stateNode[node_cell_id][node_local_number_in_cell][dim] = 0;   // node_array_list[i_node][dim];
+            }
+          }
+
+          for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
+            const FaceId face_id = face_list[i_face];
+
+            const auto& face_cell_list = face_to_cell_matrix[face_id];
+            Assert(face_cell_list.size() == 1);
+
+            CellId face_cell_id              = face_cell_list[0];
+            size_t face_local_number_in_cell = face_local_numbers_in_their_cells(face_id, 0);
+
+            Rd vectorSym(zero);
+            for (size_t dim = 0; dim < Dimension; ++dim)
+              vectorSym[dim] = stateEdge[face_cell_id][face_local_number_in_cell][1 + dim];
+
+            vectorSym -= dot(vectorSym, normal) * normal;
+
+            for (size_t dim = 0; dim < Dimension; ++dim)
+              stateFace[face_cell_id][face_local_number_in_cell][dim + 1] = vectorSym[dim];
+          }
+
+          if constexpr (Dimension == 3) {
+            const auto& edge_to_cell_matrix = mesh.connectivity().edgeToCellMatrix();
+
+            const auto& edge_local_numbers_in_their_cells = mesh.connectivity().edgeLocalNumbersInTheirCells();
+
+            const auto& edge_list = bc.edgeList();
+
+            for (size_t i_edge = 0; i_edge < edge_list.size(); ++i_edge) {
+              const EdgeId edge_id = edge_list[i_edge];
+
+              const auto& edge_cell_list = edge_to_cell_matrix[edge_id];
+              // Assert(face_cell_list.size() == 1);
+              const auto& edge_local_number_in_its_cells = edge_local_numbers_in_their_cells.itemArray(edge_id);
+
+              for (size_t i_cell = 0; i_cell < edge_cell_list.size(); ++i_cell) {
+                CellId edge_cell_id              = edge_cell_list[i_cell];
+                size_t edge_local_number_in_cell = edge_local_number_in_its_cells[i_cell];
+
+                Rd vectorSym(zero);
+                for (size_t dim = 0; dim < Dimension; ++dim)
+                  vectorSym[dim] = stateEdge[edge_cell_id][edge_local_number_in_cell][1 + dim];
+
+                vectorSym -= dot(vectorSym, normal) * normal;
+
+                for (size_t dim = 0; dim < Dimension; ++dim)
+                  stateEdge[edge_cell_id][edge_local_number_in_cell][dim + 1] = vectorSym[dim];
+              }
+            }
+          }
+        }
+      },
+      boundary_condition);
+  }
+}
+
+template <MeshConcept MeshType>
+void
+RoeViscousFormEulerianCompositeSolver_v2<MeshType>::_applyInflowBoundaryCondition(const BoundaryConditionList& bc_list,
+                                                                                  const MeshType& mesh,
+                                                                                  NodeValuePerCell<Rp>& stateNode,
+                                                                                  EdgeValuePerCell<Rp>& stateEdge,
+                                                                                  FaceValuePerCell<Rp>& stateFace) const
+{
+  for (const auto& boundary_condition : bc_list) {
+    std::visit(
+      [&](auto&& bc) {
+        using T = std::decay_t<decltype(bc)>;
+        if constexpr (std::is_same_v<InflowListBoundaryCondition, T>) {
+          // MeshData<MeshType>& mesh_data = MeshDataManager::instance().getMeshData(mesh);
+          std::cout << " Traitement INFLOW  \n";
+
+          const auto& node_to_cell_matrix = mesh.connectivity().nodeToCellMatrix();
+          const auto& face_to_cell_matrix = mesh.connectivity().faceToCellMatrix();
+
+          const auto& node_local_numbers_in_their_cells = mesh.connectivity().nodeLocalNumbersInTheirCells();
+          const auto& face_local_numbers_in_their_cells = mesh.connectivity().faceLocalNumbersInTheirCells();
+          // const auto& face_cell_is_reversed             = mesh.connectivity().cellFaceIsReversed();
+
+          const auto& face_list = bc.faceList();
+          const auto& node_list = bc.nodeList();
+
+          const auto& face_array_list = bc.faceArrayList();
+          const auto& node_array_list = bc.nodeArrayList();
+
+          for (size_t i_node = 0; i_node < node_list.size(); ++i_node) {
+            const NodeId node_id = node_list[i_node];
+
+            const auto& node_cell_list = node_to_cell_matrix[node_id];
+            // Assert(face_cell_list.size() == 1);
+            const auto& node_local_number_in_its_cells = node_local_numbers_in_their_cells.itemArray(node_id);
+
+            for (size_t i_cell = 0; i_cell < node_cell_list.size(); ++i_cell) {
+              CellId node_cell_id              = node_cell_list[i_cell];
+              size_t node_local_number_in_cell = node_local_number_in_its_cells[i_cell];
+
+              for (size_t dim = 0; dim < Dimension + 2; ++dim)
+                stateNode[node_cell_id][node_local_number_in_cell][dim] = node_array_list[i_node][dim];
+            }
+          }
+
+          for (size_t i_face = 0; i_face < face_list.size(); ++i_face) {
+            const FaceId face_id = face_list[i_face];
+
+            const auto& face_cell_list = face_to_cell_matrix[face_id];
+            Assert(face_cell_list.size() == 1);
+
+            CellId face_cell_id              = face_cell_list[0];
+            size_t face_local_number_in_cell = face_local_numbers_in_their_cells(face_id, 0);
+
+            for (size_t dim = 0; dim < Dimension + 2; ++dim)
+              stateFace[face_cell_id][face_local_number_in_cell][dim] = face_array_list[i_face][dim];
+          }
+
+          if constexpr (Dimension == 3) {
+            const auto& edge_to_cell_matrix = mesh.connectivity().edgeToCellMatrix();
+
+            const auto& edge_local_numbers_in_their_cells = mesh.connectivity().edgeLocalNumbersInTheirCells();
+            // const auto& face_cell_is_reversed             = mesh.connectivity().cellFaceIsReversed();
+
+            const auto& edge_list = bc.edgeList();
+
+            const auto& edge_array_list = bc.edgeArrayList();
+
+            for (size_t i_edge = 0; i_edge < edge_list.size(); ++i_edge) {
+              const EdgeId edge_id = edge_list[i_edge];
+
+              const auto& edge_cell_list                 = edge_to_cell_matrix[edge_id];
+              const auto& edge_local_number_in_its_cells = edge_local_numbers_in_their_cells.itemArray(edge_id);
+
+              // Assert(face_cell_list.size() == 1);
+
+              for (size_t i_cell = 0; i_cell < edge_cell_list.size(); ++i_cell) {
+                CellId edge_cell_id              = edge_cell_list[i_cell];
+                size_t edge_local_number_in_cell = edge_local_number_in_its_cells[i_cell];
+
+                for (size_t dim = 0; dim < Dimension + 2; ++dim)
+                  stateEdge[edge_cell_id][edge_local_number_in_cell][dim] = edge_array_list[i_edge][dim];
+              }
+            }
+          }
+        }
+      },
+      boundary_condition);
+  }
+}
diff --git a/src/scheme/RoeViscousFormEulerianCompositeSolver_v2.hpp b/src/scheme/RoeViscousFormEulerianCompositeSolver_v2.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..a277ae26dbf02f65b8c0ae2dad8fe9258ae98310
--- /dev/null
+++ b/src/scheme/RoeViscousFormEulerianCompositeSolver_v2.hpp
@@ -0,0 +1,29 @@
+#ifndef ROE_VISCOUS_FORM_EULERIAN_COMPOSITE_SOLVER_V2_HPP
+#define ROE_VISCOUS_FORM_EULERIAN_COMPOSITE_SOLVER_V2_HPP
+
+#include <mesh/MeshVariant.hpp>
+#include <scheme/DiscreteFunctionVariant.hpp>
+#include <scheme/IBoundaryConditionDescriptor.hpp>
+#include <scheme/RusanovEulerianCompositeSolverTools.hpp>
+
+#include <memory>
+#include <vector>
+
+// double compute_dt(const std::shared_ptr<const DiscreteFunctionVariant>& u_v,
+//                  const std::shared_ptr<const DiscreteFunctionVariant>& c_v);
+
+std::tuple<std::shared_ptr<const DiscreteFunctionVariant>,
+           std::shared_ptr<const DiscreteFunctionVariant>,
+           std::shared_ptr<const DiscreteFunctionVariant>>
+roeViscousFormEulerianCompositeSolver_v2(
+  const std::shared_ptr<const DiscreteFunctionVariant>& rho,
+  const std::shared_ptr<const DiscreteFunctionVariant>& u,
+  const std::shared_ptr<const DiscreteFunctionVariant>& E,
+  const double& gamma,
+  const std::shared_ptr<const DiscreteFunctionVariant>& c,
+  const std::shared_ptr<const DiscreteFunctionVariant>& p,
+  const std::vector<std::shared_ptr<const IBoundaryConditionDescriptor>>& bc_descriptor_list,
+  const double& dt,
+  const bool check = false);
+
+#endif   // ROE_VISCOUS_FORM_EULERIAN_COMPOSITE_SOLVER_V2_HPP
diff --git a/src/scheme/RusanovEulerianCompositeSolverTools.hpp b/src/scheme/RusanovEulerianCompositeSolverTools.hpp
index cc2a4477ce63af7504b270c145ad72b9b896a17a..e0bec67801792e94b017e15ac7d137cc3556685f 100644
--- a/src/scheme/RusanovEulerianCompositeSolverTools.hpp
+++ b/src/scheme/RusanovEulerianCompositeSolverTools.hpp
@@ -17,6 +17,9 @@ double EvaluateMaxEigenValueTimesNormalLengthInGivenDirection(   // const double
   const double& c_mean,
   const Rd& normal);
 
+// template<class Rpxd>
+// Rpxd Flux(const double& Rho, const Rd& u, const R& E, )
+
 double compute_dt(const std::shared_ptr<const DiscreteFunctionVariant>& u_v,
                   const std::shared_ptr<const DiscreteFunctionVariant>& c_v);